地质出版社有限公司 中国地质科学院勘探技术研究所主办

深部地质钻探钻进过程流式大数据分析与动态预处理——以辽宁丹东3000 m科学钻探工程为例

甘超, 曹卫华, 王鲁朝, 吴敏. 2022. 深部地质钻探钻进过程流式大数据分析与动态预处理——以辽宁丹东3000 m科学钻探工程为例. 钻探工程, 49(4): 1-7. doi: 10.12143/j.ztgc.2022.04.001
引用本文: 甘超, 曹卫华, 王鲁朝, 吴敏. 2022. 深部地质钻探钻进过程流式大数据分析与动态预处理——以辽宁丹东3000 m科学钻探工程为例. 钻探工程, 49(4): 1-7. doi: 10.12143/j.ztgc.2022.04.001
GAN Chao, CAO Weihua, WANG Luzhao and WU Min, . 2022. Streaming big data analysis and dynamic pre-processing in deep geological drilling process: A case study on the 3000m scientific drilling project in Dandong, Liaoning province. DRILLING ENGINEERING, 49(4): 1-7. doi: 10.12143/j.ztgc.2022.04.001
Citation: GAN Chao, CAO Weihua, WANG Luzhao and WU Min, . 2022. Streaming big data analysis and dynamic pre-processing in deep geological drilling process: A case study on the 3000m scientific drilling project in Dandong, Liaoning province. DRILLING ENGINEERING, 49(4): 1-7. doi: 10.12143/j.ztgc.2022.04.001

深部地质钻探钻进过程流式大数据分析与动态预处理——以辽宁丹东3000 m科学钻探工程为例

  • 基金项目:

    国家自然科学基金青年项目“基于多源井震信息融合的地质钻进过程钻速智能优化”(编号:62003318);国家自然科学基金面上项目“复杂地质钻进过程效率动态优化与安全智能预警”(编号:62173313);国家自然科学基金重点项目“复杂地质钻进过程智能控制”(编号:61733016);湖北省自然科学基金创新群体项目“地质钻探智能化技术及应用”(编号:2020CFA031);中央高校基本科研业务费专项资金科研项目“考虑复杂地质环境的钻进过程钻速优化”(编号:CUG2106350)

详细信息
    作者简介: 甘超,男,汉族,1990年生,中国地质大学(武汉)副教授,硕士生导师,主要从事复杂地质钻进过程建模与优化控制的研究工作,湖北省武汉市鲁磨路388号,ganchao@cug.edu.cn。
    通讯作者: 曹卫华,男,汉族,1972年生,中国地质大学(武汉)自动化学院院长,教授,博士生导师,主要从事过程控制、智能系统和机器人技术的研究工作,湖北省武汉市鲁磨路388号,weihuacao@cug.edu.cn。
  • 中图分类号: P634

Streaming big data analysis and dynamic pre-processing in deep geological drilling process: A case study on the 3000m scientific drilling project in Dandong, Liaoning province

More Information
  • 深部地质钻探钻进过程数据价值密度低,传统方法难以在钻中流式大数据条件下有效去除尖峰、毛刺等各类钻进过程数据噪声。本文提出一种深部地质钻探钻进过程流式大数据分析与动态预处理方法,并成功应用于辽宁丹东3000 m科学钻探工程。首先,深入分析过程工艺和数据处理需求,建立深部地质钻探钻进过程流式大数据分析与动态预处理框架结构;然后,运用限幅滤波结合过程数据分布特征、司钻/机长人工操作经验去除过程数据中的离群值;接着,引入滑动窗口策略对流式钻进大数据进行动态处理,在每个窗口中运用Savitzky Golay滤波进一步提升数据质量。仿真实验和工程应用结果验证了本文方法具有很好的工程适用性和有效性。
  • 加载中
  • [1]

    甘超.复杂地层可钻性场智能建模与钻速优化[D].武汉:中国地质大学(武汉),2019.GAN Chao. Intelligent modeling of formation drillability field and drilling rate of penetration optimization in complex conditions[D]. Wuhan: China University of Geosciences, 2019.

    [2]

    [2] 范海鹏,吴敏,曹卫华,等.基于钻进状态监测的智能工况识别[J].探矿工程(岩土钻掘工程),2020,47(4):106-113.

    FAN Haipeng, WU Min, CAO Weihua, et al. Intelligent drilling mode identification based on drilling state monitoring while drilling[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2020,47(4):106-113.

    [3]

    [3] 张正,赖旭芝,陆承达,等.基于贝叶斯网络的钻进过程井漏井涌事故预警[J].探矿工程(岩土钻掘工程),2020,47(4):114-121,144.ZHANG Zheng, LAI Xuzhi, LU Chengda, et al. Lost circulation and kick accidents warning based on Bayesian network for the drilling process[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2020,47(4):114-121.

    [4]

    [4] 张正,朱恒银.深部钻探关键设备选择原则及配置优化[J].探矿工程(岩土钻掘工程),2017,44(9):17-20.

    ZHANG Zheng, ZHU Hengyin. Selection principles and configuration optimization of the key equipments in deep drilling[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2017,44(9):17-20.

    [5]

    [5] 陈师逊,翟育峰,王鲁朝,等.西藏罗布莎科学钻探施工对深部钻探技术的启示[J].探矿工程(岩土钻掘工程),2012,39(11): 1-3,9.

    CHEN Shixun, ZHAI Yufeng, WANG Luzhao, et al. Enlightenment to deep drilling technology from scientific drilling in Luobusha of Tibet[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2012,39(11):1-3,9.

    [6]

    [6] GAN Chao, CAO Weihua, LIU Kangzhi, et al. A novel dynamic model for the online prediction of rate of penetration and its industrial application to a drilling process[J]. Journal of Process Control, 2022,109:83-92.

    [7]

    [7] GAN Chao, CAO Weihua, LIU Kangzhi, et al. A new hybrid bat algorithm and its application to the ROP optimization in drilling processes[J]. IEEE Transactions on Industrial Informatics, 2020,16(12):7338-7348.

    [8]

    [8] GAN Chao, CAO Weihua, WU Min, et al. Prediction of drilling rate of penetration (ROP) using hybrid support vector regression: A case study on the Shennongjia area, Central China[J]. Journal of Petroleum Science and Engineering, 2019,181: 106200.

    [9]

    [9] GAN Chao, CAO Weihua, WU Min, et al. Two-level intelligent modeling method for the rate of penetration in complex geological drilling process[J]. Applied Soft Computing, 2019,80: 592-602.

    [10]

    [10] ASHRAFI Seyed Babak, ANEMANGELY Mohammad, SABAH Mohammad, et al. Application of hybrid artificial neural networks for predicting rate of penetration (ROP): A case study from Marun Oil Field[J]. Journal of Petroleum Science and Engineering, 2019,175:604-623.

    [11]

    [11] DIAZ Melvin B, KIM Kwang Yeom, SHIN Hyu Soung, et al. Predicting rate of penetration during drilling of deep geothermal well in Korea using artificial neural networks and real-time data collection[J]. Journal of Natural Gas Science and Engineering, 2019,67:225-232.

    [12]

    [12] 熊虎林,李谦.基于地层成分和钻进参数的钻速预测模型[J]. 探矿工程(岩土钻掘工程),2018,45(10):195-201.

    XIONG Hulin, LI Qian. ROP prediction model based on formation composition and drilling parameters[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2018,45(10):195-201.

    [13]

    [13] 李谦,曹彦伟,朱海燕.基于人工智能的钻速预测模型数据有效性下限分析[J].钻探工程,2021,48(3):21-30.

    LI Qian, CAO Yanwei, ZHU Haiyan. Discussion on the lower limit of data validity for ROP prediction based on artificial intelligence[J]. Drilling Engineering, 2021,48(3):21-30.

    [14]

    [14] DIAZ Melvin B, KIM Kwang Yeom, SHIN Hyu Soung. On-line prediction model for rate of penetration (ROP) with cumulating filed data in real time[C]//YSRM & NDRMGEJeyu, KoreaMay 10-13, 2017.

    [15]

    [15] SAVITZKY Abraham, Golay M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry, 1964,36(8):1627-1639.

  • 加载中
计量
  • 文章访问数:  619
  • PDF下载数:  274
  • 施引文献:  0
出版历程
收稿日期:  2022-05-05
修回日期:  2022-06-10

目录