Design and application of a condition monitoring App for the geological drilling process
-
摘要: 区域钻场数据监测对地质钻探过程的控制和决策具有重要意义。为解决当前大多数钻探过程状态监测系统存在的钻孔数据单一、数据互联不通以及缺乏远程便携式监测软件等问题,结合移动通信和互联网技术,开发一款基于Android的地质钻探过程状态监测App。该App整体采用模型-视图-演示器架构进行设计,具有实时监测、历史曲线趋势分析等一系列功能。在辽宁丹东3000 m科学钻探工程现场投入使用,取得了良好的状态监测效果。该App可实时获取钻进过程状态信息,并及时提醒专家进行操作调节与决策,为地质钻探施工提供很大的便利。Abstract: Regional well-site data monitoring is of great significance to the control and decision-making of the geological drilling process. To solve the problems of sing well-site data, poor data interconnection, and lack of remote portable monitoring software in most current condition monitoring systems for the geological drilling process, a condition monitoring App based on Android for geological drilling process has been developed in combination with mobile communication and Internet technology. The App is designed with Model-View-Presenter architecture as a whole and has a series of functions such as real-time monitoring, historical curve trend analysis, and so on. It has been used on a geological drilling site and achieved good condition monitoring effect. The App can obtain the real-time status information of the drilling process and timely remind experts to make operation adjustments and decision-making, which provides great convenience for geological drilling.
-
Key words:
- geological drilling process /
- condition monitor /
- App design and development /
- Android
-
-
[1] 李鹏,罗玉钦,田有,等.深部地质资源地球物理探测技术研究发展[J].地球物理学进展,2021,36(5):2011-2033.
LI Peng, LUO Yuqin, TIAN You, et al. Research progress of geophysical exploration technology for deep geological resources [J]. Progress in Geophysics, 2021,36(5):2011-2033.
[2] [2] 梁海波,黄明,张泷,等.煤层气新型钻井综合参数监测系统设计[J].自动化仪表,2015,36(6):33-35.
LIANG Haibo, HUANG Ming, ZHANG Long, et al. Design of the novel comprehensive monitoring system of the drilling parameters for coalbed methane[J]. Process Automation Instrumentation, 2015,36(6):33-35.
[3] [3] 汤凤林,ЧихоткинA.В.,ЕсауленкоВ.Н.,等.深井钻进时井底参数自动遥控系统研究与探讨[J].探矿工程(岩土钻掘工程),2020,47(5):36-45.
TANG Fenglin, CHIKHOTKIN A.V., ESAULENKO V.N.,et al. Automatic remote measurement and control system for download parameters in deep well drilling[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2020,47(5):36-45.
[4] [4] 范海鹏,吴敏,曹卫华,等.基于钻进状态监测的智能工况识别[J].探矿工程(岩土钻掘工程),2020,47(4):106-113.
FAN Haipeng, WU Min, CAO Weihua, et al. Intelligent drilling mode identification based on drilling state monitoring while drilling[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2020,47(4):106-113.
[5] [5] 胡英才.基于神经网络融合技术的钻井事故诊断方法研究[D].西安:西安石油大学,2011.HU Yingcai. The study of drilling fault diagnosis method based on Neural Network fuse technology[D]. Xi’an: Xi’an Shiyou University, 2011.
[6] [6] Li Y, Cao W, Hu W, et al. Diagnosis of downhole incidents for geological drilling processes using multi-time scale feature extraction and probabilistic neural networks[J]. Process Safety and Environmental Protection, 2020,137:106-115.
[7] [7] Li Y, Cao W, Hu W, et al. Detection of downhole incidents for complex geological drilling processes using amplitude change detection and dynamic time warping[J]. Journal of Process Control, 2021,102:44-53.
[8] [8] Li Y, Cao W, Hu W, et al. Incipient fault detection for geological drilling processes using multivariate generalized Gaussian distributions and Kullback-Leibler divergence[J]. Control Engineering Practice, 2021,117:104937.
[9] [9] 孙合辉,陶青龙,李邓玥,等.基于录井参数的溢流预警模型研究[J].录井工程,2015,26(4):17-21,93.
SUN Hehui, TAO Qinglong, LI Dengyue, et al. Overflow warning model based on mud logging parameters[J]. Mud Logging Engineering, 2015,26(4):17-21,93.
[10] [10] Zhang Z, Lai X, Wu M, et al. Fault diagnosis based on feature clustering of time series data for loss and kick of drilling process [J]. Journal of Process Control, 2021,102:24-33.
[11] [11] 张正,赖旭芝,陆承达,等.基于贝叶斯网络的钻进过程井漏井涌事故预警.探矿工程(岩土钻掘工程),2020,47(4):114-121,144.
ZHANG Zheng, LAI Xuzhi, LU Chengda, et al. Lost circulation and kick accidents warning based on Bayesian network for the drilling process[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2020,47(4):114-121,144.
[12] [12] Gan C, Cao W, Wu M, et al. Two-level intelligent modeling method for the rate of penetration in complex geological drilling process[J]. Applied Soft Computing, 2019,80:592-602.
[13] [13] Gan C, Cao W, Wu M, et al. Prediction of drilling rate of penetration (ROP) using hybrid support vector regression: A case study on the Shennongjia area, Central China[J]. Journal of Petroleum Science and Engineering, 2019,181:106200.
[14] [14] 张进双.DrillScene钻井监测系统[J].石油钻探技术,2014,42 (4):63.ZHANG Jinshuang. Drillscene drilling monitoring system[J]. Petroleum Drilling Techniques, 2014,42(4):63.
[15] [15] 邵超,万春红.E-R图的精细设计[J].计算机教育,2015(8):78-81.
SHAO Chao, WAN Chunhong. Fine design of E-R diagram [J]. Computer Education, 2015(8):78-81.
[16] [16] 程春蕊,刘万军.高内聚低耦合软件架构的构建[J].计算机系统应用,2009,18(7):19-22.
CHENG Chunrui, LIU Wanjun. Construction of high coheres and low coupling software architecture[J]. Computer Systems & Applications, 2009,18(7):19-22.
[17] [17] Ojeda-Guerra C N. A simple software development methodology based on MVP for Android applications in a classroom context [C]//
Proceedings of 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing . 2015: 1429-1434.[18] [18] 刘东,詹娟娟,冯志新.用fastJSON实现安卓手机APP与ASP.NET系统集成研究[J].软件导刊,2016,162(4): 10-112.
LIU Dong, ZHAN Juanjuan, FENG Zhixin. Using fastJSON to realize Android mobile app and ASP.NET system integration [J]. Software Guide, 2016,162(4):110-112.
-
计量
- 文章访问数: 653
- PDF下载数: 239
- 施引文献: 0