地质出版社有限公司 中国地质科学院勘探技术研究所主办

纳米材料对低固相冲洗液性能影响的研究

刘徐三. 2022. 纳米材料对低固相冲洗液性能影响的研究. 钻探工程, 49(4): 61-67. doi: 10.12143/j.ztgc.2022.04.009
引用本文: 刘徐三. 2022. 纳米材料对低固相冲洗液性能影响的研究. 钻探工程, 49(4): 61-67. doi: 10.12143/j.ztgc.2022.04.009
LIU Xusan. 2022. Influence of nanomaterials on the properties of low-solid drilling fluids. DRILLING ENGINEERING, 49(4): 61-67. doi: 10.12143/j.ztgc.2022.04.009
Citation: LIU Xusan. 2022. Influence of nanomaterials on the properties of low-solid drilling fluids. DRILLING ENGINEERING, 49(4): 61-67. doi: 10.12143/j.ztgc.2022.04.009

纳米材料对低固相冲洗液性能影响的研究

  • 基金项目:

    国家重点研发计划课题(编号:2018YF0808005)

详细信息
    作者简介: 刘徐三,男,汉族,1983年生,助理研究员,硕士,从事钻探技术研究工作,陕西省西安市碑林区雁塔北路52号,liuxusan@cctegxian.com。
  • 中图分类号: P634.6

Influence of nanomaterials on the properties of low-solid drilling fluids

  • 低固相冲洗液是最适合绳索取心钻探工艺的冲洗液类型之一,但其防塌护壁能力和钻孔净化能力弱,阻碍了绳索取心钻探工艺在复杂地层的应用。本文通过实验研究,分析了纳米四氧化三铁、纳米氮化硼、纳米二氧化钛、多壁碳纳米管和纳米二氧化硅对低固相冲洗液的流变性能和滤失性能的影响规律。结果表明:纳米四氧化三铁、多壁碳纳米管和纳米氮化硼对低固相冲洗液的性能影响最明显,且具有增粘提切的作用。在此基础之上,通过正交实验分析了上述3种纳米材料复合后对低固相冲洗液性能的影响规律,得到性能优良的复合纳米低固相冲洗液体系优化配方:3%钠基膨润土+0.5%CMC-HV+0.3%纳米四氧化三铁+0.9%纳米氮化硼+0.9%多壁碳纳米管。最后,分析了纳米材料改善低固相冲洗液性能的作用机理。
  • 加载中
  • [1]

    蔡美峰,薛鼎龙,任奋华.金属矿深部开采现状与发展战略[J].工程科学学报,2019,41(4):417-426.

    CAI Meifeng, XUE Dinglong, REN Fenhua. Current status and development strategy of metal mines[J]. Chinese Journal of Engineering, 2019,41(4):417-426.

    [2]

    [2] 王柯淇,王治国,高静怀.金属矿产资源探测的地震方法:综述与展望[J].地球物理学进展,2021,36(4):1607-1629.

    WANG Keqi, WANG Zhiguo, GAO Jinghuai. Seismic methods for exploration of metal mineral resources: Review and prosect[J]. Progress in Geophysics, 2021,36(4):1607-1629.

    [3]

    [3] 冉恒谦,张金昌,谢文卫,等.地质钻探技术与应用研究[J].地质学报,2011,85(11):1806-1822.

    RAN Hengqian, ZHANG Jinchang, XIE Wenwei, et al. Applications study of geo-drilling technology[J]. Acta Geologica Sinica, 2011,85(11):1806-1822.

    [4]

    [4] 张永勤.高效钻探技术是加速“危机矿山接替资源勘探规划”实施的最有效手段[J].探矿工程(岩土钻掘工程),2006,33(1):6-8.

    ZHANG Yongqin. High efficiency drilling tech is best way to speed up’crisis mine replacement resources exploration plan’[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2006,33(1):6-8.

    [5]

    [5] 任伟.综合地质勘探技术在矿山开采中的应用研究[J].世界有色金属,2021(21):43-44.

    REN Wei. Application of comprehensive geological exploration technology in mining[J]. World Nonferrous Metals, 2021(21):43-44.

    [6]

    [6] 周志雄.复杂地层地质钻探冲洗液技术现状[J].四川地质学报,2014,34(S1):104-107.

    ZHOU Zhixiong. Current status of flushing fluid technology for geological drilling in complex formations[J]. Acta Geologica Sichuan, 2014,34(S1):104-107.

    [7]

    [7] 王盛,潘振泉,黄忠高,等.防塌泥浆在朱溪矿区ZK1013孔煤系地层钻探施工中的应用[J].探矿工程(岩土钻掘工程),2018,45(9):25-28.

    WANG Sheng, PAN Zhenquan, HUANG Zhonggao, et al. Application of anti-cave mud in coal formation drilling of ZK1013 of Zhuxi mining area[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2018,45(9):25-28.

    [8]

    [8] 孔祥旺,张绍和,王文彬,等.湘西北复杂构造区破碎地层绳索取心钻进技术难点及优化[J].煤田地质与勘探,2021,49(2):247-252.

    KONG Xiangwang, ZHANG Shaohe, WANG Wenbin, et al. Difficulties and optimization of wire-line core drilling technology for broken formation in complex structure area of northwest Hunan[J]. Coal Geology & Exploration, 2021,49(2):247-252.

    [9]

    [9] 刘振东,贺伦俊,李卉,等.钻井液纳米颗粒封堵性评价方法研究[J].钻井液与完井液,2019,36(2):214-217.

    LIU Zhendong, HE Lunjun, LI Hui, et al. Study on the method of evaluating plugging capacity of nanoparticles used in drilling fluid[J]. Drilling Fluid & Completion Fluid, 2019,36(2):214-217.

    [10]

    [10] 李强,李志勇,张浩东,等.响应面法优化纳米材料稳定的泡沫钻井液[J].钻井液与完井液,2020,37(1):23-30.

    LI Qiang, LI Zhiyong, ZHANG Haodong, et al. Study on foam drilling fluid stabilized with nanomaterials optimized with RSM[J]. Drilling Fluid & Completion Fluid, 2020,37(1):23-30.

    [11]

    [11] 倪晓骁,蒋官澄,王建华,等.油基钻井液用憎液性纳米封堵剂[J].钻井液与完井液, 2021,38(3):298-304.

    NI Xiaoxiao, JIANG Guancheng, WANG Jianhua, et al. Study on a lyophobic nanophase plugging agent for oil base muds[J]. Drilling Fluid & Completion Fluid, 2021,38(3):298-304.

    [12]

    [12] 谢龙龙,叶成,袁翊,等.准噶尔盆地南缘高温高密度有机盐钻井液技术[J].科学技术与工程,2021,21(21):8851-8856.

    XIE Longlong, YE Cheng, YUAN Yi, et al. High-temperature and high-density organic salt drilling fluid technology in the southern margin of Junggar Basin[J]. Science Technology and Engineering, 2021,21(21):8851-8856.

    [13]

    [13] 罗源皓,林凌,郭拥军,等.纳米材料在抗高温钻井液中的应用进展[J/OL].化工进展,2022-02-21:1-15.LUO Yuanhao, LIN Ling, GUO Yongjun, et al. Progress in the application of nanomaterials in high temperature resistant drilling fluids[J/OL]. Chemical Industry and Engineering Progress, 1-15[2022-02-21].

    [14]

    [14] 胡继良.复杂地层地质钻探冲洗液研究与应用[D].北京:中国地质大学,2012.HU Jiliang. Research and application of complex formation geological drilling fluid[D]. Beijing: China University of Geosciences, 2012.

    [15]

    [15] 冀前辉.煤矿井下碎软煤层泡沫钻进关键技术研究[D].北京:煤炭科学研究总院研究生院,2020.JI Qianhui. Research on key technology of foam drilling in undergroud broken soft coal[D]. Beijing: Graduate School of China Coal Research Institute, 2020.

    [16]

    [16] 袁成,盛海亮,冯松,等.纳米金复合水凝胶的制备及其应用研究进展[J].中国科学:化学,2021,51(12):1563-1578.

    YUAN Cheng, SHENG Hailiang, FENG Song, et al. Progress on synthesis and applications of nanogold-based composite hydrogels[J]. Scientia Sinica (Chimica), 2021,51(12):1563-1578.

    [17]

    [17] 周宝义,赵贤正,章超,等.钻井液用多功能阳离子聚合物乳液研制及其作用机制[J].中国石油大学学报(自然科学版),2020,44(4):121-127.

    ZHOU Baoyi, ZHAO Xianzheng, ZHANG Chao, et al. Preparation and mechanism of cationic polymer latex as multi-functional additive in water based drilling fluid[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020,44(4):121-127.

    [18]

    [18] 袁进科,陈礼仪,王军伟,等.青藏高原复杂地层地质钻探低固相冲洗液试验研究[J].钻探工程,2021,48(4):79-84.

    YUAN Jinke, CHEN Liyi, WANG Junwei, et al. Experimental study on low solid flushing fluid for geological drilling in complex metamorphic of Qing-Tibetan plateau[J]. Drilling Engineering, 2021,48(4):79-84.

  • 加载中
计量
  • 文章访问数:  252
  • PDF下载数:  79
  • 施引文献:  0
出版历程
收稿日期:  2022-03-04
修回日期:  2022-05-03

目录