地质出版社有限公司 中国地质科学院勘探技术研究所主办

泥水盾构泥浆泵选型关键参数规律性研究

孙恒, 黄新淼, 马超, 陈少林, 罗利平, 张红伟. 2022. 泥水盾构泥浆泵选型关键参数规律性研究. 钻探工程, 49(4): 144-151. doi: 10.12143/j.ztgc.2022.04.022
引用本文: 孙恒, 黄新淼, 马超, 陈少林, 罗利平, 张红伟. 2022. 泥水盾构泥浆泵选型关键参数规律性研究. 钻探工程, 49(4): 144-151. doi: 10.12143/j.ztgc.2022.04.022
SUN Heng, HUANG Xinmiao, MA Chao, CHEN Shaolin, LUO Liping and ZHANG Hongwei, . 2022. Regularity of the key parameters for slurry shield mud pump selection. DRILLING ENGINEERING, 49(4): 144-151. doi: 10.12143/j.ztgc.2022.04.022
Citation: SUN Heng, HUANG Xinmiao, MA Chao, CHEN Shaolin, LUO Liping and ZHANG Hongwei, . 2022. Regularity of the key parameters for slurry shield mud pump selection. DRILLING ENGINEERING, 49(4): 144-151. doi: 10.12143/j.ztgc.2022.04.022

泥水盾构泥浆泵选型关键参数规律性研究

详细信息
    作者简介: 孙恒,男,汉族,1986年生,部门经理,工程师,电气自动化专业,长期从事盾构法施工和科研工作,湖北省武汉市东西湖区金银湖路11号,290249517@qq.com。
  • 中图分类号: U45

Regularity of the key parameters for slurry shield mud pump selection

  • 为了认清在泥水盾构泥浆泵选型设计时的规律性和差异性,针对现有研究的不足,采用统计分析法,从15个实际工程案例入手,统计了包括开挖直径、隧道长度、穿越主要地层、进排泥的管径、密度和流量在内的17个关键参数,分析在选型设计阶段关键参数之间的规律性和差异性,得到了进排泥的管径、密度与开挖直径的一次线性回归方程,不同地层的进排泥密度选取规律等6点结论,最后将结论成功运用于福州地铁F1线滨海新城站—机场站中间风井泥水盾构区间,研究成果可为今后泥浆泵选型或评估提供新的思路。
  • 加载中
  • [1]

    朱伟,钱勇进,闵凡路,等.中国泥水盾构使用现状及若干问题[J].隧道建设(中英文),2019,39(5):724-735.

    ZHU Wei, QIAN Yongjin, MIN Fanlu, et al. The current status and some problems of slurry shield in China[J]. Tunnel Construction, 2019,39(5):724-735.

    [2]

    [2] 苏志学,蒲晓波,贺开伟,等.泥水平衡盾构泥浆泵选型设计研究[J].装备制造技术,2015(3):87-89.

    SU Zhixue, PU Xiaobo, HE Kaiwei, et al. Selection and design on slurry pump of slurry shield machine[J]. Equipment Manufacturing Technology, 2015(3):87-89.

    [3]

    [3] 陈文远.泥水平衡盾构泥水环流系统设计计算研究[J].中国设备工程,2018(2):86-89.

    CHEN Wenyuan. Study on design and calculation of slurry circulation system of slurry balance shield[J]. China Plant Engineering, 2018(2):86-89.

    [4]

    [4] 赵旭,黄平华,叶忠,等.中继泵自主配置技术在泥水盾构施工中的应用[J]. 隧道建设,2011,31(5):634-638.

    ZHAO Xu, HUANG Pinghua, YE Zhong, al at. Application of relay pump independent configuration technology in slurry shield tunneling[J]. Tunnel Construction, 2011,31(5):634-638.

    [5]

    [5] 贾金建.泥水盾构机泥水循环系统选型及应用[J].工程机械与维修,2013(2):148-150.

    JIA Jingjian. Selection and application of slurry circulation system for slurry shield machine[J]. Construction Machinery & Maintenance, 2013(2):148-150.

    [6]

    [6] 马凤伟.泥水管道选择与接力泵位置计算[J].河南建材,2010(5):45-46,48.

    MA Fengwei. Selection of slurry pipeline and position calculation of relay pump[J], Henan Building Materials, 2010(5):45-46,48.

    [7]

    [7] 古艳旗.大直径泥水平衡盾构机泥水循环系统选型[J].工程技术(引文版),2016(2):234.GU Yanqi. Selection of slurry circulation system for large diameter slurry balance shield machine[J]. Engineering Technology (Citation Version), 2016(2):234.

    [8]

    [8] 申智杰.广深港客专狮子洋隧道大型泥水平衡盾构泥水处理系统配置[J].建筑机械(上半月),2011(5):100-103.

    SHEN Zhijie. Slurry circuit configuration of major slurry-balanced TBM in GSG Passenger Line Shiziyang Tunnel[J]. Construction Machinery, 2011(5):100-103.

    [9]

    [9] 段文水.隧道工程泥水输送系统泥泵的选型应用[J].流体机械,2009,37(12):49-51.

    DUAN Wenshui. The selection of sludge pump applied in the sludge delivery system of tunneling project[J]. Fluid Machinery, 2009,37(12):49-51.

    [10]

    [10] 陈健,薛峰,赵合全,等.大直径泥水盾构环流系统管路压力损失及携渣特性[J].隧道与地下工程灾害防治,2020,2(2):83-91.

    CHEN Jian, XUE Feng, ZHAO Hequan, et al. Pipeline conveying resistance and slag carrying characteristics of large diameter slurry shield circulation system[J]. Hazard Control in Tunnelling and Underground Engineering, 2020,2(2):83-91.

    [11]

    [11] 李怀洪,彭少杰.Ø11.58m泥水平衡盾构泥水输送系统设计[C].上海国际隧道工程研讨会,2005.LI Huaihong, PENG Shaojie. Design of slurry transportation system for Ø11.58m slurry balance shield[C]. Shanghai International Tunnel Engineering Seminar, 2005.

    [12]

    [12] 赵国栋.泥水盾构排浆接力泵接入位置的计算与应用[J].铁道建筑技术,2019(S1):149-153.

    ZHAO Guodong. Calculation and application on connection position of slurry discharge relay pump in slurry shield tunnel[J]. Railway Construction Technology, 2019(S1):149-153.

    [13]

    [13] 黄波,李晓龙,陈长江.大直径泥水盾构复杂地层长距离掘进过程中的泥浆管路磨损研究[J]. 隧道建设,2016,36(4):490-496.

    HUANG Bo, LI Xiaolong, CHEN Changjiang. Study of abrasion of slurry pipe of large-diameter slurry shield boring in complex strata[J]. Tunnel Construction, 2016,36(4):490-496.

    [14]

    [14] 董伯让.泥水盾构泥浆管路磨损与减振处理技术[J].隧道建设,2016,36(11):1385-1388.

    DONG Borang. Countermeasures for reducing wear and vibration of slurry pipe of slurry shield[J]. Tunnel Construction, 2016,36(11):1385-1388.

    [15]

    [15] 崔建,徐公允,陈焱,等.清华园隧道泥水环流系统泥浆输送管路磨损分析[J].现代隧道技术,2020,57(S1):1224-1231.

    CUI Jian, XU Gongyun, CHEN Yan. et al. Analysis of slurry transportation pipeline wear in slurry circulation system of Tsinghuayuan Tunnel[J]. Modern Tunnelling Technology, 2020,57(S1):1224-1231.

    [16]

    [16] 孔玉清.泥水盾构环流系统及排泥管携碴能力分析与应用[J].现代隧道技术,2018,55(3):205-213.

    KONG Yuqing. Analysis of the circulation system of a slurry shield and the muck carrying ability of a dredging pipe[J]. Modern Tunnelling Technology, 2018,55(3):205-213.

    [17]

    [17] 秦邦江,夏毅敏.泥水盾构泥浆环流系统管路压力损失分析与计算[J].液压气动与密封,2016,36(7):52-55.

    QIN Bangjiang, XIA Yimin. The differential pressure analysis and calculation of pipeline circulation system in slurry shield[J]. Hydraulics Pneumatics & Seals, 2016,36(7):52-55.

    [18]

    [18] 孙桐林.泥水盾构水平直管压力损失特性研究[J].铁道建筑技术,2017(10):7-10,49.

    SUN Tonglin. Study on pressure loss characteristics of horizontal straight pipe in slurry shield machine[J]. Railway Construction Technology, 2017(10):7-10,49.

    [19]

    [19] 张宁川.泥水盾构主机推进速度与泥浆系统能力的匹配[J].隧道建设,2007(6):7-9.

    ZHANG Ningchuan. Matching between thrust speed of main shield machine and capacity of slurry system[J]. Tunnel Construction, 2007(6):7-9.

    [20]

    [20] 李新月.复合地层泥水盾构环流关键参数选择探析[J].隧道建设(中英文),2018,38(5):771-775.

    LI Xinyue. Research on mud transportation parameter selectionfor slurry shield in composite strata[J]. Tunnel Construction, 2018,38(5):771-775.

    [21]

    [21] 赵运臣,王光辉,王超峰.武汉长江公路隧道泥水盾构进排浆泵配置及进浆密度对最大掘进速度的影响分析[J].隧道建设,2008(4):408-411.

    ZHAO Yunchen, WANG Guanghui, WANG Chaofeng. Analysis on influence of slurry feeding/discharging pumps and feeding slurry densities on maximum boring advance rates: Case study on slurry shields of Wuhan Yangtze River crossing highway tunnel[J]. Tunnel Construction, 2008(4):408-411.

  • 加载中
计量
  • 文章访问数:  325
  • PDF下载数:  74
  • 施引文献:  0
出版历程
收稿日期:  2021-08-20
修回日期:  2021-11-28

目录