地质出版社有限公司 中国地质科学院勘探技术研究所主办

675型泥浆脉冲器短节应力分析及结构设计优化

王智明. 2023. 675型泥浆脉冲器短节应力分析及结构设计优化. 钻探工程, 50(1): 26-32. doi: 10.12143/j.ztgc.2023.01.005
引用本文: 王智明. 2023. 675型泥浆脉冲器短节应力分析及结构设计优化. 钻探工程, 50(1): 26-32. doi: 10.12143/j.ztgc.2023.01.005
WANG Zhiming. 2023. Stress analysis and structural design optimization of Type 675 mud pulser sub. DRILLING ENGINEERING, 50(1): 26-32. doi: 10.12143/j.ztgc.2023.01.005
Citation: WANG Zhiming. 2023. Stress analysis and structural design optimization of Type 675 mud pulser sub. DRILLING ENGINEERING, 50(1): 26-32. doi: 10.12143/j.ztgc.2023.01.005

675型泥浆脉冲器短节应力分析及结构设计优化

  • 基金项目:

    国家重点研发计划项目“深海关键技术与装备——大直径旋转导向钻井系统研制与应用示范”(编号:SQ2017YFSF010105)

详细信息
    作者简介: 王智明,男,汉族,1969年生,高级工程师,地质工程专业,博士,从事随钻、定向仪器研发工作,河北省三河市燕郊海油大街201号中海油服油田技术事业部,wangzhm10@cosl.com.cn
  • 中图分类号: P634;TE921

Stress analysis and structural design optimization of Type 675 mud pulser sub

  • 为给钻柱上功能短节的结构设计及优化提供指导,以承受压弯扭组合载荷的极限工况为例,对675型仪器串的泥浆脉冲器短节模型进行简化处理,建立了有限元分析模型。针对675型仪器串上泥浆脉冲器短节的结构特点,对泥浆脉冲器短节的不同区域采取不同的网格划分方法。在模型两侧添加工装以进行复合加载,对于压弯扭组合载荷中的弯曲载荷,通过计算极限狗腿度下产生的最大挠度进行等效加载。分析结果表明,在压弯扭组合载荷共同作用的极限工况下,应力集中现象主要出现在钻铤及电子骨架上,开孔及开槽处为薄弱位置,基于分析结果提出了675型仪器串泥浆脉冲器短节的结构改进建议。本文提出的分析方法和设计经验可为此类功能短节设计及优化提供参考。
  • 加载中
  • [1]

    刘安兵,南丽华,常大伟,等.钻铤涡动模拟和钻铤接头累积疲劳损伤评估[J].石油机械,2018,46(8):20-30.

    LIU Anbing, Lihua NAN, CHANG Dawei, et al. Whirl simulation of drill collar and assessment of cumulative fatigue damage on drill collar connection[J]. China Petroleum Machinery, 2018,46(8):20-30.

    [2]

    [2] 钟文建,李双贵,熊宇楼,等.超深水平井钻柱动力学研究及强度校核[J].西南石油大学学报(自然科学版),2020,42(4):135-143.

    ZHONG Wenjian, LI Shuanggui, XIONG Yulou, et al. The dynamics characteristics and strength check of drilling string in ultra-deep horizontal well[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(4):135-143.

    [3]

    [3] PENG X, YU H, LIAN Z, et al. Material optimization of drill pipe in complex wellbore environments by comparing fatigue life and cost[J]. Energy Reports, 2021,7:5420-5430.

    [4]

    [4] 冯少波,林元华,施太和,等.钻杆加厚过渡带几何结构对应力集中的影响[J].石油钻采工艺,2006,28(1):76-78,86.

    FENG Shaobo, LIN Yuanhua, SHI Taihe, et al. Research on stress concentration in intermediate belt of thickened drill pipe[J]. Oil Drilling & Production Technology, 2006,28(1):76-78,86.

    [5]

    [5] 傅建钦,程耀东,张汝忻.基于应力集中分析的钻杆内加厚过渡结构设计[J].力学与实践,2000,22(1):34-36.

    FU Jianqin, CHENG Yaodong, ZHANG Ruxin. Internal upset taper design of a drill pipe based on stress concentration analysis[J]. Mechanics in Engineering, 2000,22(1):34-36.

    [6]

    [6] 闫铁,范森,石德勤.钻铤螺纹联接处载荷分布规律研究[J].石油学报,1996(3):116-122.

    YAN Tie, FAN Sen, SHI Deqin. A study on load distribution ata drill collar threaded connection[J]. Acta Petrolei Sinica, 1996(3):116-122.

    [7]

    [7] 陶世军,刘剑辉,马建强,等.钻铤螺纹有限元分析及优化改进[J].石油机械,2009,37(10):52-53,56.

    TAO Shijun, LIU Jianhui, MA Jianqiang, et al. Finite element analysis and optimization of drill collar thread[J]. China Petroleum Machinery, 2009,37(10):52-53,56.

    [8]

    [8] 贾延,刘广君.基于无网格法的孔板应力集中问题的研究[J].宁夏大学学报(自然科学版),2008,29(1):33-36.

    JIA Yan, LIU Guangjun. Study on stress concentration of a plate with hole based on meshless method[J]. Journal of Ningxia University (Natural Science Edition), 2008,29(1):33-36.

    [9]

    [9] 张丽,孙铁.开孔处应力集中系数的简化计算[J].当代化工,2014,43(1):142-143.

    ZHANG Li, SUN Tie. Simplified calculation about stress concentration factor at openings[J]. Contemporary Chemical Industry, 2014,43(1):142-143.

    [10]

    [10] 丁然,郭彦书,刘庆刚.压力容器开孔间距对应力集中的影响[J].油气储运,2012,31(6):432-434,487.

    DING Ran, GUO Yanshu, LIU Qinggang. Influence of holding space at pressure vessel on the stress concentration[J]. Oil & Gas Storage and Transportation, 2012,31(6):432-434,487.

    [11]

    [11] MOHANAVEL V, PRASATH S, ARUNKUMAR M, et al. Modeling and stress analysis of aluminium alloy based composite pressure vessel through ANSYS software[J]. Materials Today: Proceedings, 2021,37:1911-1916.

    [12]

    [12] 蒋豹,张强,崔巍,等.受拉弯扭阶梯轴应力集中系数的有限元分析[J].机械设计与制造工程,2018,47(7):11-15.

    JIANG Bao, ZHANG Qiang, CUI Wei, et al. FEA of stress concentration factors for a stepped shaft with composite loading[J]. Machine Design and Manufacturing Engineering, 2018,47(7):11-15.

    [13]

    [13] TONG L, XU G, LIU Y, et al. Finite element analysis and formulae for stress concentration factors of diamond bird-beak SHS T-joints[J]. Thin-Walled Structures, 2015,86:108-120.

    [14]

    [14] 王志刚,梁健,刘秀美.深部地质取心钻探钻柱失效行为分析[J].探矿工程(岩土钻掘工程),2018,45(12):28-31,46.

    WANG Zhigang, LIANG Jian, LIU Xiumei. Analysis of failure behavior of drill string in deep geological core drilling[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2018,45(12):28-31,46.

    [15]

    [15] 尹浩,梁健,孙建华.特深钻探钻柱组合优化设计研究[J].探矿工程(岩土钻掘工程),2019,46(4):56-62.

    YIN Hao, LIANG Jian, SUN Jianhua. Research on optimum drilling string assembly design for extra deep hole drilling[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2019,46(4):56-62.

    [16]

    [16] 冯永仁,鲍忠利,于会媛.钻铤孔槽结构有限元分析及优化[J].中国海上油气,2013,25(4):38-41.

    FENG Yongren, BAO Zhongli, YU Huiyuan. FEA and optimal design of drill collar groove structures[J]. China Offshore Oil and Gas, 2013,25(4):38-41.

    [17]

    [17] 李方坡,刘永刚,王新虎.钻柱失效原因中的制造因素分析[J].钻采工艺,2013,36(6):86-88,7.

    LI Fangpo, LIU Yonggang, WANG Xinhu. Analysis of manufacturing factors affecting drilling string failure[J]. Drilling & Production Technology, 2013,36(6):86-88,7.

  • 加载中
计量
  • 文章访问数:  272
  • PDF下载数:  102
  • 施引文献:  0
出版历程
收稿日期:  2021-12-07
修回日期:  2022-06-15

目录