地质出版社有限公司 中国地质科学院勘探技术研究所主办

超高速下单粒金刚石与岩石相互作用响应的研究

王悦, 张凯, 李其州, 周琴, 凌雪, 刘宝林. 2023. 超高速下单粒金刚石与岩石相互作用响应的研究. 钻探工程, 50(3): 21-29. doi: 10.12143/j.ztgc.2023.03.003
引用本文: 王悦, 张凯, 李其州, 周琴, 凌雪, 刘宝林. 2023. 超高速下单粒金刚石与岩石相互作用响应的研究. 钻探工程, 50(3): 21-29. doi: 10.12143/j.ztgc.2023.03.003
WANG Yue, ZHANG Kai, LI Qizhou, ZHOU Qin, LING Xue and LIU Baolin, . 2023. Research on the response of single diamond particles and rock interaction at ultra-high speed. DRILLING ENGINEERING, 50(3): 21-29. doi: 10.12143/j.ztgc.2023.03.003
Citation: WANG Yue, ZHANG Kai, LI Qizhou, ZHOU Qin, LING Xue and LIU Baolin, . 2023. Research on the response of single diamond particles and rock interaction at ultra-high speed. DRILLING ENGINEERING, 50(3): 21-29. doi: 10.12143/j.ztgc.2023.03.003

超高速下单粒金刚石与岩石相互作用响应的研究

  • 基金项目:

    国家自然科学基金青年科学基金项目“超高转速钻进临界速度及钻头碎岩磨损特征研究”(编号:42202346);国家重点研发计划项目“变革性技术关键科学问题”重点专项“南极冰下复杂地质环境多工艺钻探理论与方法”课题四“多工艺极地钻探装备研发与系统集成”(编号:2021YFA0719104);山东省深部金矿探测大数据应用开发工程实验室开放课题基金项目重点课题“高转速金刚石钻进机理及钻进响应模型研究”(编号:SDK202213);山东省煤田地质局重点科研专项项目“深地钻探小口径取心高效钻进技术研究”(编号:鲁煤地科字(2022)33号)

详细信息
    作者简介: 王悦,女,汉族,1998年生,在读硕士研究生,地质工程专业,研究方向为超高转速钻进技术,北京市海淀区学院路29号,2832982531@qq.com。
    通讯作者: 张凯,男,汉族,1989年生,实验师,机械工程专业,博士,长期从事钻探机械与工具研发及摩擦学与表面工程研究和教学工作,北京市海淀区学院路29号,zhangkai66@cugb.edu.cn。

Research on the response of single diamond particles and rock interaction at ultra-high speed

More Information
  • 随着钻进深度的加深,破碎硬岩地层愈发困难,提高转速成为硬岩地层快速有效破碎的可行方法之一。孕镶金刚石钻头在硬岩层中具有较好的应用效果,常规转速下孕镶钻头与岩石之间相互作用机理较为完善,超高转速下也有相应的应用和研究基础,但碎岩机理尚未完全清晰。为探究常规速度至超高速下单粒金刚石对岩石的切削力和硬岩的破碎变化情况,以孕镶钻头和岩石相互作用界面响应模型为基础,利用ABAQUS软件建立单粒金刚石切削岩石的二维模型,并提出一种近似分析方法,并进一步推导单粒金刚石受力表达式。结果表明:(1)单粒金刚石对岩石的切削作用主要集中在切削具与岩石接触界面的中上部,高速下比常规切削速度下单粒金刚石受切削力减小,且主要作用部位受到切削速度改变的影响。(2)金刚石颗粒作用岩石中存在塑性破坏和脆性破坏且两种破坏模式交替产生,超高速下岩石产生脆性破坏的比例相比于常规切削速度有所增加,且超高速下切削力波动范围更小,岩石破碎所需的能量更少。(3)提出一种孕镶金刚石钻头碎岩响应近似分析方法,将产生碎岩作用的金刚石颗粒等价为具有“刀尖”和“前、后刀面”的切削具进行分析,推导得到单粒金刚石受力表达式,其受力与切削速度、切削深度等因素有关。研究结果可以为提高转速切削硬岩地层的进一步研究及应用提供依据和参考。
  • 加载中
  • [1]

    冉恒谦,梁健,张林霞,等.“十三五”地质钻探工程技术发展回顾及“十四五”展望[J].钻探工程,2021,48(S1):1-13.

    RAN Hengqian, LIANG Jian, ZHANG Linxia, et al. Technology review of the geological drilling engineering of the “13th Five Year Plan” and prospect the “14th Five Year Plan”[J]. Drilling Engineering, 2021,48(S1):1-13.

    [2]

    [2] 林斌,徐冬.深部岩石力学参数随赋存深度变化规律研究[J].安徽理工大学学报(自然科学版),2017,37(6):8.LIN Bin, XU Dong. Study on the law of mechanical parameters of rock in deep coal bearing strata[J]. Journal of Anhui University of Science and Technology (Natural Science),2017,37(6):8.

    [3]

    [3] 周宏伟,谢和平,左建平,等.赋存深度对岩石力学参数影响的试验研究[J].科学通报,2010,55(34):3276-3284.

    ZHOU Hongwei, XIE Heping, ZUO Jianping, et al. Experimental study of the effect of depth on mechanical parameters of rock[J]. Chinese Sci Bull, 2010,55(34):3276-3284.

    [4]

    [4] 丁立钦,王志乔,凌雪,等.深部地质钻探钻遇弱面地层井孔围岩稳定分析[J].探矿工程(岩土钻掘工程),2020,47(4):122-128.

    DING Liqin, WANG Zhiqiao, LING Xue, et al.Deep geo drilling borehole stability analysis in anisotropic formations[J].Exploration Engineering (Rock & Soil Drilling and Tunneling), 2020,47(4):122-128.

    [5]

    [5] 甘超,曹卫华,王鲁朝,等.深部地质钻探钻进过程流式大数据分析与动态预处理——以辽宁丹东3000 m科学钻探工程为例[J].钻探工程,2022,49(4):1-7.

    GAN Chao, CAO Weihua, WANG Luzhao, et al. Streaming big data analysis and dynamic pre-processing in deep geological drilling process: A case study on the 3000m scientific drilling project in Dandong, Liaoning province[J]. Drilling Engineering, 2022,49(4):1-7.

    [6]

    [6] 常思,刘宝昌,韩哲,等.热-机碎岩孕镶金刚石钻头的设计及试验研究[J].钻探工程,2022,49(2):77-84.

    CHANG Si, LIU Baochang, HAN Zhe, et al. Design and test of the impregnated diamond drill bit assisted by frictional heat[J]. Drilling Engineering, 2022,49(2):77-84.

    [7]

    [7] 方啸虎,崔祥仁,谢德龙.近年来钻探用超硬材料的发展与展望[J].钻探工程,2021,48(S1):18-24.

    FANG Xiaohu, CUI Xiangren, XIE Delong. Development and prospect of the super hard materials applied to the drilling industry in recent years[J]. Drilling Engineering, 2021,48(S1):18-24.

    [8]

    [8] FRANCA L F P, MOSTOFI M, RICHAR T. Interface laws for impregnated diamond tools for a given state of wear[J]. International Journal of Rock Mechanics & Mining Sciences, 2015(73):184-193.

    [9]

    [9] 管锋,万锋,吴永胜,等.涡轮钻具研究现状[J].石油机械,2021,49(10):1-7.

    GUAN Feng, WAN Feng, WU Yongsheng, et al. Research status of turbodrill[J]. China Petroleum Machinery, 2021,49(10):1-7.

    [10]

    [10] 冯定,刘统亮,王健刚,等.国外涡轮钻具技术新进展[J].石油机械,2020,48(11):1-9.

    FENG Ding, LIU Tongliang, WANG Jiangang, et al. Advances in foreign turbodrill technology[J]. China Petroleum Machinery, 2020,48(11):1-9.

    [11]

    [11] 赵洪山.元坝124超深井钻井关键技术[J].石油天然气学报,2012,34(5):91-94,120.

    ZHAO Hongshan. Key drilling technique used in Yuanba-124 ultra-deep wells[J]. Journal of Oil and Gas Technology, 2012,34(5):91-94,120.

    [12]

    [12] 张晨,张武涛,梁振勇,等.涡轮+孕镶提速技术在准噶尔南缘高103井的应用[J].新疆石油天然气,2021,17(2):31-35.

    ZHANG Chen, ZHANG Wutao, LIANG Zhenyong, et al. The application of turbine and impregnated bit to enhance rop in Gao 103 well in southern margin of junggar basin[J].Xinjiang Oil & Gas, 2021,17(2):31-35.

    [13]

    [13] 王树超,王维韬,雨松.塔里木山前井涡轮配合孕镶金刚石钻头钻井提速技术[J].石油钻采工艺,2016,38(2):156-159.

    WANG Shuchao, WANG Weitao, YU Song. Combination of turbodrill and impregnated diamond bit to enhance ROP in drilling of wells in piedmont zone, Tarim Basin[J]. Oil Drilling & Production Technology, 2016,38(2):156-159.

    [14]

    [14] JUDZIS A, BOUCHER M, MCCAMMON J, et al. Investigation of smaller footprint drilling system; Ultra-high rotary speed diamond drilling has potential for reduced energy requirements[C]//IADC/SPE Drilling Conference. Miami, Florid: OnePetro,2006.

    [15]

    [15] JUDZIS A, ROBERTSON H, BLACK A. Smaller footprint drilling system for deep and hard rock environments feasibility of ultra-high-speed diamond drilling, final report[R]. Office of Fossil Energy, DOE Award Number DE-FC26-03NT15401, 2010.

    [16]

    [16] 高明洋,张凯,周琴,等.基于ABAQUS的PDC高速切削岩石机理研究[J].石油机械,2019,47(2):1-7.

    GAO Mingyang, ZHANG Kai, ZHOU Qin, et al. Research on PDC high speed rock cutting mechanism based on ABAQUS[J]. China Petroleum Machinery, 2019,47(2):1-7.

    [17]

    [17] 何宁.高速切削技术[M].上海:上海科学技术出版社,2012:1-46.

    HE Ning. High Speed Cutting Technology[M]. Shanghai: Shanghai Science and Technology Press, 2012:1-46.

    [18]

    [18] Detournay E, Defourny P. A phenomenological model for the drilling action of drag bits[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1992,29(1):13-23.

    [19]

    [19] ZHOU Y N, ZHANG W, GAMWO I, et al. Mechanical specific energy versus depth of cut in rock cutting and drilling[J].International Journal of Rock Mechanics & Mining Sciences, 2017,100:287-297.

    [20]

    [20] 贾彦杰,蒋平,童华.基于Drucker-Prager准则的扩孔器单齿正交切削岩土三维力学模型[J].岩土力学,2013,34(5):1429-1436.

    JIA Yanjie, JIANG Ping, TONG Hua. 3D mechanical modeling of soil orthogonal cutting under a single reamer cutter based on Drucker-Prager criterion[J]. Rock and Soil Mechanics, 2013,34(5):1429-1436.

    [21]

    [21] 张晖辉,刘峰,常福清.岩石损伤破坏过程声发射试验及其能量特征分析[J].公路交通科技,2011,28(3):48-54.

    ZHANG Huihui, LIU Feng, CHANG Fuqing. Experimental study of acoustic emission characteristics during rock failure process and energy propedies[J]. Journal of Highway and Transportation Research and Development, 2011,28(3):48-54.

    [22]

    [22] YARI N, KAPITANIAK M, VAZIRI V, et al. Calibrated FEM modelling of rock cutting with PDC cutter[C]//International Conference on Engineering Vibration. MATEC Web of Conferences 148,16006,2018.

    [23]

    [23] 张林中.金刚石切削岩石的模拟[D].北京:中国地质大学(北京),2008:16-19.

    ZHANG Linzhong. The simulation of cutting rocks by diamond[D]. Beijing: China University of Geosciences (Beijing), 2008:16-19.

    [24]

    [24] 易兴洋.花岗岩加工过程中影响切削机理的关键因素研究[D].沈阳:沈阳建筑大学,2018:22-26.

    YI Xingyang. Study on key factors affecting cutting mechanism in granite processing[D]. Shenyang: Shenyang Jianzhu University, 2018:22-26.

    [25]

    [25] 叶赟.孕镶钎焊金刚石钻头的磨损试验及其切削过程的数值仿真[D].北京:中国地质大学(北京),2010.YE Yun. The wear experiment and cutting simulation of impregnated brazed diamond bit[D]. Beijing: China University of Geosciences (Beijing), 2010.

    [26]

    [26] 汤凤林, Нескоромных В. В., 宁伏龙,等.金刚石钻进岩石破碎过程及其与规程参数关系的研究[J].钻探工程,2021,48(10):43-55.

    TANG Fenglin, NESKOROMNYH V. V., NING Fulong, et al. Research on the rock fragmentation process and its relationship with drilling parameters in diamond drilling[J]. Drilling Engineering, 2021,48(10):43-55.

    [27]

    [27] 陈琳,徐小丽,徐银花.温度与加载速率对岩石力学性质的影响[J].广西大学学报(自然科学版),2016,41(1):170-177.

    CHEN Lin, XU Xiaoli, XU Yinhua. Effect of temperature and loading rate on mechanical properties of rock[J]. Journal of Guangxi University (Nat Sci Ed), 2016,41(1):170-177.

    [28]

    [28] 张艳博,刘志超,梁鹏,等.单一裂纹几何特征对岩石力学性质影响程度研究[J].煤矿开采,2019,24(1):16-21.

    ZHANG Yanbo, LIU Zhichao, LIANG Peng, et al. Influence of single fracture geometrical feature to rock mechanical properties[J]. Coal Mining Technology, 2019,24(1):16-21.

    [29]

    [29] 何录忠,周琴,李斌斌,等.岩石切削机理模型分析及实验研究[J].探矿工程(岩土钻掘工程),2014,41(9):85-88.

    HE Luzhong, ZHOU Qin, LI Binbin, et al. Analysis on rock cutting mechanism model and the experimental study[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2014,41(9):85-88.

    [30]

    [30] 陈明,安庆龙,刘志强.高速切削技术基础与应用[M].上海:上海科学技术出版社,2012:27-40.

    CHEN Ming, AN Qinglong, LIU Zhiqiang. Fundamentals and Applications of High Speed Cutting Technology[M]. Shanghai: Shanghai Science and Technology Press, 2012:27-40.

    [31]

    [31] 王家骏,邹德永,杨光,等.PDC切削齿与岩石相互作用模型[J].中国石油大学学报(自然科学版),2014,38(4):104-109.

    WANG Jiajun, ZOU Deyong, YANG Guang, et al. Interaction model of PDC cutter and rock[J]. Journal of China University of Petroleum (Edition of Natural Science), 2014,38(4):104-109.

  • 加载中
计量
  • 文章访问数:  398
  • PDF下载数:  71
  • 施引文献:  0
出版历程
收稿日期:  2022-10-12
修回日期:  2023-03-21

目录