地质出版社有限公司 中国地质科学院勘探技术研究所主办

高温钻井液高效冷却系统设计与模拟研究

冯壕辛, 贾瑞, 孙思远, 汤鸽鸽, 范悦帅, 曾学梽. 2023. 高温钻井液高效冷却系统设计与模拟研究. 钻探工程, 50(3): 106-115. doi: 10.12143/j.ztgc.2023.03.014
引用本文: 冯壕辛, 贾瑞, 孙思远, 汤鸽鸽, 范悦帅, 曾学梽. 2023. 高温钻井液高效冷却系统设计与模拟研究. 钻探工程, 50(3): 106-115. doi: 10.12143/j.ztgc.2023.03.014
FENG Haoxin, JIA Rui, SUN Siyuan, TANG Gege, FAN Yueshuai and ZENG Xuezhi, . 2023. Design and simulation of a high-efficiency cooling system for high temperature drilling fluid. DRILLING ENGINEERING, 50(3): 106-115. doi: 10.12143/j.ztgc.2023.03.014
Citation: FENG Haoxin, JIA Rui, SUN Siyuan, TANG Gege, FAN Yueshuai and ZENG Xuezhi, . 2023. Design and simulation of a high-efficiency cooling system for high temperature drilling fluid. DRILLING ENGINEERING, 50(3): 106-115. doi: 10.12143/j.ztgc.2023.03.014

高温钻井液高效冷却系统设计与模拟研究

详细信息
    作者简介: 冯壕辛,男,汉族,1998年生,硕士研究生,地质工程专业,从事非常规油气资源钻采研究工作,吉林省长春市西民主大街938号,924720828@qq.com
    通讯作者: 贾瑞,男,汉族,1985年生,副教授,博士生导师,地质工程专业,从事非常规油气资源钻采研究工作,吉林省长春市西民主大街938号,jiarui@jlu.edu.cn

Design and simulation of a high-efficiency cooling system for high temperature drilling fluid

More Information
  • 随着油气钻井越来越深,地热钻井越来越多,钻井液面临的高温问题越来越突出,在钻井过程中,对钻井液进行及时冷却并使之达到适宜的温度对于钻井安全是非常必要的。本文总结了目前常用的高温钻井液的冷却方式和特点,综合空气冷却节能的特点和采用载冷剂强制冷却高效的优势,提出了一种高温钻井液高效冷却系统,对冷却系统中空气冷却器、管壳式换热器进行设计、校核、模拟,验证了设计的可靠性,表明使用该冷却方案,能够将80 ℃、1800 L/min的高温钻井液冷却至40 ℃以下,同时还讨论了该冷却系统在不同钻井液温度、不同钻井液流量以及不同气温条件下的冷却效果。
  • 加载中
  • [1]

    朱喜,王贵玲,马峰,等.雄安新区地热资源潜力评价[J].地球科学,2023,48(3):1093-1106.

    ZHU Xi, WANG Guiling, MA Feng, et al. Evaluation of the geothermal resource of the Xiong’an New Area[J]. Earth Science. 2023,48(3):1093-1106.

    [2]

    [2] 马青芳.钻井液冷却技术及装备综述[J].石油机械,2016,44(10):42-46.

    MA Qingfang. Discussion on drilling fluid cooling technology and equipment[J]. China Petroleum Machinery. 2016,44(10):42-46.

    [3]

    [3] 马岩,邢希金.天然气水合物钻井液冷却技术进展[J].非常规油气,2016,3(1):82-86.

    MA Yan, XING Xijin. Development of mud cooling technology for gas hydrate drilling[J]. Unconventional Oil & Gas, 2016,3(1):82-86.

    [4]

    [4] 王兴忠,杨昌学.DZK02地热钻井技术实践[J].西部探矿工程,2020,32(4):58-62.

    WANG Xingzhong, Yang Changxue. Practice of DZK02 geothermal drilling technology[J]. West-China Exploration Engineering, 2020,32(4):58-62.

    [5]

    [5] 刘彪,李双贵,杨明合,等.钻井液温度控制技术研究进展[J].化学工程师,2019,33(1):42-44,59.

    LIU Biao, LI Shuanggui, YANG Minghe, et al. Research progress on drilling fluid temperature control technology[J]. Chemical Engineer, 2019,33(1):42-44,59.

    [6]

    [6] 赵江鹏.天然气水合物钻控泥浆制冷系统及孔底冷冻机构传热数值模拟[D].长春:吉林大学,2011.ZHAO Jiangpeng. Research on mud cooling system and simulation of down-hole freezing mechanism for gas hydrate core drilling[D]. Changchun: Jilin University, 2011.

    [7]

    [7] Saito S. The drilling experience of K6-2, the high-temperature and crooked geothermal well in Kakkonda, Japan[J]. Journal of Energy Resources Technology, 1993,115(2):117-123.

    [8]

    [8] Saito S, Sakuma S. Frontier geothermal drilling operations succeed at 500℃ BHST[J]. SPE Drilling & Completion, 2000,15(3):152-161.

    [9]

    [9] 何跃文,杨雄文,高雁,等.北美地热井高温硬岩钻井技术[J].钻探工程,2022,49(1):79-87.

    He David, Yang Xiongwen, Yan Gao, et al. North America geothermal high temperature hard rock drilling technology[J]. Drilling Engineering, 2022,49(1):79-87.

    [10]

    [10] Champness E. Drilling fluid cooling system: U.S. Patent 4215753[P]. 1980-08-05.

    [11]

    [11] 赵江鹏,孙友宏,郭威.钻井泥浆冷却技术发展现状与新型泥浆冷却系统的研究[J].探矿工程(岩土钻掘工程),2010,37(9):1-5.

    ZHAO Jiangpeng, SUN Youhong, GUO Wei. Current situation of drilling mud cooling technology and research on a new type of drilling mud cooling system[J]. Exploration Engineering (Rock & Soil Drilling and Tunnelling), 2010,37(9):1-5.

    [12]

    [12] Dorry K E, Coit A, Gutierrez C G, et al. Drilling mud cooler opens up new automated drilling markets in hot hole applications[C]//SPE/IADC Drilling Conference & Exhibition, 2015.

    [13]

    [13] McCraw G. Closed loop drilling mud cooling system for land-based drilling operations: U.S. Patent Application 16/026516[P]. 2018-11-08.

    [14]

    [14] 张贵磊.钻井液海水冷却器换热设计计算与应用[J].自动化技术与应用,2020,39(1):9-12.

    ZHANG Guilei. Design calculation and application of heat exchanger for drilling fluid seawater cooler[J]. Techniques of Automation and Applications, 2020,39(1):9-12.

    [15]

    [15] 李亚伟,王斌斌,董怀荣,等.钻井液地面冷却系统方案设计及关键参数计算[J].中外能源,2020,25(S1):117-122.

    LI Yawei, WANG Binbin, DONG Huairong, et al. Design of drilling fluid surface cooling system and calculation of key parameters[J]. Sino-Global Energy, 2020,25(S1):117-122.

    [16]

    [16] 刘世滨,李明龙,丁辉,等.钻井液、泥浆强制冷却装置:CN203925357U[P].2014-11-05.

    LIU Shibin, LI Minglong, DING Hui, et al. Forced cooling device for drilling fluid and mud:CN203925357U[P]. 2014-11-05.

    [17]

    [17] 刘世滨,尹记雷,李明龙,等.陆地钻机钻井液、泥浆强制冷却装置:CN203978347U[P].

    2014-12-03LIU Shibin, YIN Jilei, LI Minglong, et al. Land drilling fluid, mud forced cooling device: CN203978347U[P]. 2014-12-03

    [18]

    [18] 刘均一,陈二丁,赵红香,等.相变材料在高温深井钻井液降温技术中的前瞻研究[C]//2020油气田勘探与开发国际会议论文集,2020:1180-1188.

    LIU Junyi, CHEN Erding, ZHAO Hongxiang, et al. Prospective study of phase change materials in deep well drilling fluid cooling technology[C]//IFEDC Organizing Committee, 2020:1180-1188.

    [19]

    [19] 孙兰义,马占华,王志刚,等.换热器工艺设计[M].北京:中国石化出版社,2015SUN Lanyi, MA Zhanhua, WANG Zhigang, et al. Process Design of Heat Exchanger[M]. Beijing: China Petrochemical Press, 2015.

    [20]

    [20] 胡童颖,董向宇,冉恒谦,等.地热井钻井液对井壁温度分布的影响研究[J].探矿工程(岩土钻掘工程),2020,47(1):20-25.

    HU Tongying, DONG Xiangyu, RAN Hengqian, et al. Study on influence of drilling fluids on temperature distribution over the borehole wall in geothermal wells[J]. Exploration Engineering (Rock & Soil Drilling and Tunnelling), 2020,47(1):20-25.

    [21]

    [21] 赖周平,张荣克.空气冷却器[M].北京:中国石化出版社,2010.LAI Zhouping, ZHANG Rongke. Air Cooler[M]. Beijing: China Petrochemical Press, 2010.

    [22]

    [22] JTG/T D81—2006,公路交通安全设施设计细则[S].JTG/T D81—2006, Guidelines for design of highway safety facilities[S].

    [23]

    [23] 刘卫卫.螺纹管式泥浆制冷换热器研究[D].长春:吉林大学,2014.LIU Weiwei. Research on threaded pipe heat exchanger for refrigerating mud[D]. Changchun: Jilin University, 2014.

    [24]

    [24] 赵帅,孙友宏,郭威,等.天然气水合物泥浆制冷换热器的分析[J].制冷学报,2017,38(1):80-87.

    ZHAO Shuai, SUN Youhong, GUO Wei, et al. Research on heat exchanger of gas hydrate mud cooling system[J]. Journal of Refrigeration, 2017,38(1):80-87.

    [25]

    [25] 钱颂文.换热器设计手册[M].北京:化学工业出版社,2002.QIAN Songwen. Heat Exchanger Design Handbook[M]. Beijing: Chemical Industry Press, 2002.

    [26]

    [26] 孟雪,荆恒铸,曹真真,等.基于Aspen EDR的管壳式换热器的设计[J].化工进展,2019,38(S1):3.MEGN Xue, JING Hengzhu, CAO Zhenzhen, et al. Design of shell and tube heat exchanger based on Aspen EDR[J]. Chemical Industry and Engineering Progress, 2019,38(S1):3.

    [27]

    [27] 徐谦,吉春正,蒋永旭,等.溴化锂吸收式冷水机在客船上的运用[J].船舶工程,2021,43(S1):278-281.

    XU Qian, JI Chunzheng, JIANG Yongxu, et al. Application of LiBr absorption chiller on passenger ship[J]. Chinese Journal of Refrigeration Technology, 2021,43(S1):278-281.

  • 加载中
计量
  • 文章访问数:  686
  • PDF下载数:  125
  • 施引文献:  0
出版历程
收稿日期:  2022-09-28
修回日期:  2023-01-20

目录