地质出版社有限公司 中国地质科学院勘探技术研究所主办

含水率影响下全风化泥质灰岩工程地质特性及桩孔稳定性分析

何昭宇, 秦永军, 张玉旗, 徐云龙, 李翔. 2023. 含水率影响下全风化泥质灰岩工程地质特性及桩孔稳定性分析. 钻探工程, 50(4): 84-93. doi: 10.12143/j.ztgc.2023.04.012
引用本文: 何昭宇, 秦永军, 张玉旗, 徐云龙, 李翔. 2023. 含水率影响下全风化泥质灰岩工程地质特性及桩孔稳定性分析. 钻探工程, 50(4): 84-93. doi: 10.12143/j.ztgc.2023.04.012
HE Zhaoyu, QIN Yongjun, ZHANG Yuqi, XU Yunlong and LI Xiang, . 2023. Engineering geological characteristics of completely weathered argillaceous limestone under the influence of water content and analysis of pile hole stability. DRILLING ENGINEERING, 50(4): 84-93. doi: 10.12143/j.ztgc.2023.04.012
Citation: HE Zhaoyu, QIN Yongjun, ZHANG Yuqi, XU Yunlong and LI Xiang, . 2023. Engineering geological characteristics of completely weathered argillaceous limestone under the influence of water content and analysis of pile hole stability. DRILLING ENGINEERING, 50(4): 84-93. doi: 10.12143/j.ztgc.2023.04.012

含水率影响下全风化泥质灰岩工程地质特性及桩孔稳定性分析

  • 基金项目:

    山东省住房城乡建设科技计划(编号:2020-K1-1)

详细信息
    作者简介: 何昭宇,男,汉族,1995年生,工程师,硕士,岩土工程专业,从事岩土工程勘察与设计方面的工作,山东省济南市无影山路686号,834970120@qq.com。

Engineering geological characteristics of completely weathered argillaceous limestone under the influence of water content and analysis of pile hole stability

  • 全风化泥质灰岩成分复杂、结构特殊,遇水易软化崩解,强度迅速降低,极易诱发多种工程地质灾害。以济南大涧沟地区全风化泥质灰岩为研究对象,通过现场勘察与室内试验相结合,从物理、力学和水理等方面研究了全风化泥质灰岩的工程地质特性,并基于离散元软件对钻进过程孔壁稳定性进行评价,得到钻孔孔内应力与灌浆压力间的相关关系,为今后桩基施工提供合理的建议和参考。研究结果表明:全风化泥质灰岩耐水性差、易崩解,且含水率对崩解速率影响尤为显著;随着含水率升高,全风化泥质灰岩抗剪强度呈指数函数趋势减小,强度损伤劣化规律明显;在动态扰动下全风化泥质灰岩内部单元损伤严重,建议将泥浆压力设定为0.3 MP,可在不造成土层破坏的前提下对孔壁生成较为明显的法向接触力,为孔壁的稳定提供较好的支撑。
  • 加载中
  • [1]

    GB/T 50218-2014,工程岩体分级标准[S].GB/T 50218-2014, Engineering rock mass classification standard[S].

    [2]

    [2] 陈德金.全强风化花岗岩隧道塌方灾害致灾机理研究[J].土工基础,2021,35(2):194-198,202.

    CHEN Dejin. Research on the disaster mechanism of the collapse disaster of the fully weathered granite tunnel[J]. Geotechnical Foundation, 2021,35(2):194-198,202.

    [3]

    [3] 茶增云,朱涛,沈孟龙,等.浅埋富水全风化花岗岩公路隧道塌方数值模拟分析[J].施工技术(中英文):1-7.

    Zengyun CHA, ZHU Tao, SHEN Menglong, et al. Numerical simulation analysis of collapse of shallow-buried water-rich fully weathered granite highway tunnel[J]. Construction technology (Chinese and English):1-7.

    [4]

    [4] 刘泽,李友云.全风化花岗岩边坡坡面降雨冲刷数值模拟分析[J].湖南交通科技,2018,44(2):52-57.

    LIU Ze, LI Youyun. Numerical simulation analysis of rainfall scouring on completely weathered granite slope[J]. Hunan Communications Science and Technology, 2018,44(2):52-57.

    [5]

    [5] Lumb Peter. The properties of decomposed granite[J]. Géotechnique, 1962,12(3):226-243.

    [6]

    [6] 尚彦军,王思敬,岳中琦,等.全风化花岗岩孔径分布-颗粒组成-矿物成分变化特征及指标相关性分析[J].岩土力学,2004(10):1545-1550.

    SHANG Yanjun, WANG Sijing, YUE Zhongqi, et al. Pore size distribution-particle composition-mineral composition change characteristics and index correlation analysis of completely weathered granite[J]. Geotechnical Mechanics, 2004(10):1545-1550.

    [7]

    [7] 肖红兵. 高速铁路深厚全风化花岗岩地基沉降特性及加固技术研究[D].西南交通大学,2016.XIAO Hongbing. Research on settlement characteristics and reinforcement technology of deep and completely weathered granite foundation of high-speed railway[D]. Southwest Jiaotong University, 2016.

    [8]

    [8] 李凯,王志兵,韦昌富,等.饱和度对风化花岗岩边坡土体抗剪特性的影响[J].岩土力学,2016,37(S1):267-273.

    LI Kai, WANG Zhibing, WEI Changfu, et al. Effect of saturation on shear properties of weathered granite slope soil[J]. GeoTechnical Mechanics, 2016,37 (S1): 267-273.

    [9]

    [9] GB/T 50123—2019, 土工试验方法标准[S].GB/T 50123—2019, Standard for soil test methods[S].

    [10]

    [10] 何昭宇.古近系巨厚“红层”工程地质特性及灾害隐患预测研究[D].徐州:中国矿业大学,2019.HE Zhaoyu. Research on the engineering geological characteristics and hazard potential prediction of Paleogene thick “red beds”[D]. Xuzhou: China University of Mining and Technology, 2019.

    [11]

    [11] 陈伟乐,徐国平,宋神友,等.风化岩遇水软化的强度试验及力学特性研究[J].岩土力学,2022,43(S1):67-76.

    CHEN Weile, XU Guoping, SONG Shenyou, et al. Strength test and mechanical properties study of weathered rock softening with water[J]. Geotechnical Mechanics, 2022,43(S1): 67-76.

    [12]

    [12] 汤华,严松,杨兴洪,等.差异含水率下全风化混合花岗岩抗剪强度与微观结构试验研究[J].岩土力学,2022,43(S1):55-66,76.

    TANG Hua, YAN Song, YANG Xinghong, et al. Experimental study on shear strength and microstructure of completely weathered migmatite under different water content[J]. Geotechnical Mechanics, 2022,43(S1):55-66,76.

    [13]

    [13] 曾卫.基于离散元流-固耦合优化算法的岩石渗透破裂机理研究[D].徐州:中国矿业大学,2018.ZENG Wei. Research on the mechanism of rock permeation and fracture based on discrete element flow solid coupling optimization algorithm[D]. Xuzhou: China University of Mining and Technology, 2018

    [14]

    [14] 董琪,王媛,冯迪.水压致裂起裂压力的细观离散元模拟及试验研究[J/OL].岩土力学,2022(12):1-11.

    DONG Qi, WANG Yuan, FENG Di. Mesoscopic discrete element simulation and experimental study of hydraulic fracturing initiation pressure[J/OL]. Geotechnical Mechanics, 2022(12):1-11.

    [15]

    [15] 徐松.黏性土宏—细观参数关系的PFC2D模拟研究[J].中国水运,2017(8):3.XU Song. PFC2D simulation study on the relationship between macro and micro parameters of cohesive soil[J]. China Water Transport, 2017(8):3.

    [16]

    [16] 石崇,徐卫亚.颗粒流数值模拟技巧与实践[M].北京:中国建筑工业出版社,2015.SHI Chong, XU Weiya. Techniques and Practice for Numerical Simulation of Particle Flow[M]. Beijing: China Archetecture & Building Press, 2015.

    [17]

    [17] 郑万栋,申翃,靳利安,等.泥浆的有效静液压力及在泥浆护壁中的作用[J].土工基础,2019,33(6):704-708.

    ZHENG Wandong, SHEN Hong, JIN Li’an, et al. Effective hydrostatic pressure of mud and its role in mud retaining wall [J]. Geotechnical Foundation, 2019,33(6):704-708.

  • 加载中
计量
  • 文章访问数:  169
  • PDF下载数:  24
  • 施引文献:  0
出版历程
收稿日期:  2023-02-10
修回日期:  2023-05-11

目录