Numerical simulation of gas hydrate exploitation in the Shenhu Sea area by injecting methanol inhibitor
-
摘要: 我国神狐海域天然气水合物储量丰富,为我国提供了大量的能源储备,采用高效的开采方式能有效地解决我国能源短缺的问题。注入抑制剂法是一种主要的开采天然气水合物的方法。甲醇是一种性能优良的抑制剂,具有抑制性能好且粘度低的优点。本文根据实际地质参数建立了三维三相四组分开采海域天然气水合物数值模型,采用中间注入井两边生产井的水平井布井方式,通过数值模拟手段研究了注热甲醇溶液抑制剂法开采水合物的动态特征,与单一降压法和注入热水法的开采效果进行了对比。结果表明,注入热甲醇溶液能够提高储层温度并且甲醇能促进水合物的分解,改善了单一降压法和注热水法的不足,具有更高的初期产气速率,更高的初期气水比,以及更高的水合物分解效果,是一种具有竞争力的开采手段。Abstract: The gas hydrate reserve is abundant in the Shenhu Sea area, which provides a large amount of energy reserve for our country, and the problem of the shortage of energy can be solved effectively by means of efficient exploitation. Inhibitor injection method is one of the main methods to extract gas hydrate. Methanol is an excellent inhibitor with good inhibition and low viscosity. In this paper, a three-dimension, three-phase and four-component numerical model for gas hydrate exploitation in the sea area was established according to the actual geological parameters. The dynamic characteristics of hydrate exploitation in hydrothermal methanol solution were studied by means of numerical simulation using the horizontal well layout method with production wells on both sides and the injection well in the middle. The extraction effects of single depressurization method and hot water injection method were compared with that of the methanol inhibitor injection and the results show that the later can increase the reservoir temperature and promote the decomposition of hydrate, which improves the shortcomings of the former two methods. It has higher initial gas production rate, higher initial gas-water ratio and higher hydrate decomposition effect, which is a competitive exploitation method.
-
Key words:
- gas hydrate /
- extraction methods /
- numerical simulation /
- inhibitor method /
- Shenhu Sea area
-
-
[1] 祝有海,庞守吉,王平康,等.中国天然气水合物资源潜力及试开采进展[J].沉积与特提斯地质,2021,41(4):524-535.
ZHU Youhai, PANG Shouji, WANG Pingkang, et al. A review of the resource potentials and test productions of natural gas hydrates in China[J]. Sedimentary Geology and Tethyan Geology, 2021,41(4):524-535.
[2] [2] 宁伏龙,梁金强,吴能友,等.中国天然气水合物赋存特征[J].天然气工业,2020,40(8):25.NING Fulong, LIANG Jinqiang, WU Nengyou, et al. Reservoir characteristics of natural gas hydrates in China[J]. Natural Gas Industry, 2020,40(8):25.
[3] [3] Chen C, Yang L, Jia R, et al. Simulation study on the effect of fracturing technology on the production efficiency of natural gas hydrate[J]. Energies, 2017,10(8):1241.
[4] [4] 黄鑫,王海波,张乐,等.天然气水合物藏开采增产技术研究进展[J].科学技术与工程,2022,22(9):11.HUANG Xin, WANG Haibo, ZHANG Le, et al. Review of production increasing technology of natural gas hydrate[J]. Science Technology and Engineering, 2022,22(9):11.
[5] [5] Seo Y, Lee S, Lee J. Experimental verification of methane replacement in gas hydrates by carbon dioxide[C]//
11th International Conference on Chemical and Process Engineering .Baltimore, MD, US , 2013.[6] [6] Zhao Y J, Zhai Y Q, Ma G H, et al. Kinetic analysis and improvement of the Williamson reaction for the synthesis of poly (ethylene glycol) propionaldehyde[J]. Journal of Applied Polymer Science, 2009,111(3):1638-1643.
[7] [7] 周守为,陈伟,李清平.深水浅层天然气水合物固态流化绿色开采技术[J].中国海上油气,2014,26(5):1-7.
ZHOU Shouwei ,CHEN Wei, LI Qingping. The green solid fluidization development principle of natural gas hydrate stored in shallow layers of deep water[J]. China Offshore Oil And Gas, 2014,26(5):1-7.
[8] [8] 黄安源.油气运输过程中水合物的抑制[D].青岛:中国石油大学(华东),2011.HUANG Anyuan. Inhibition of gas hydrate in oil and gas transportation[D]. Qingdao: China University of Petroleum (East China), 2011.
[9] [9] 杨胜雄,梁金强,陆敬安,等.南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J].地学前缘,2017,24(4):1-14.
YANG Shengxiong, LIANG Jinqiang, LU Jing’an, et al. New understandings on the characteristics and controlling factors of gas hydrate reservoirs in the Shenhu area on the northern slope of the South China Sea[J]. Earth Science Frontiers, 2017,24(4):1-14.
[10] [10] 黄霞,祝有海,卢振权,等.南海北部天然气水合物钻探区烃类气体成因类型研究[J].现代地质,2010,24(3):576-580.
HUANG Xia, ZHU Youhai , LU ZhenQuan, et al. Study on genetic types of hydrocarbon gases from the gas hydrate drilling area, the northern South China Sea[J]. Geoscience, 2010,24(3):576-580.
[11] [11] Dong F, Zang X, Li D, et al. Experimental investigation on propane hydrate dissociation by high concentration methanol and ethylene glycol solution injection[J]. Energy & Fuels, 2009,23(3):1563-1567.
[12] [12] Du J, Wang X, Huang L, et al. Experiments and prediction of phase equilibrium conditions for methane hydrate formation in the NaCl, CaCl2, MgCl2 electrolyte solutions[J]. Fluid Phase Equilibria, 2019,479:1-8.
[13] [13] Fan S, Zhang Y, Tian G, et al. Natural gas hydrate dissociation by presence of ethylene glycol[J]. Energy & Fuels, 2006, 20(1):419-425.
[14] [14] Li X S, Xu C G, Zhang Y, et al. Investigation into gas production from natural gas hydrate: A review[J]. Applied Energy, 2016,172(15):286-322.
[15] [15] Yuan Q, Sun C Y, Wang X H, et al. Experimental study of gas production from hydrate dissociation with continuous injection mode using a three-dimensional quiescent reactor[J]. Fuel, 2013,106:417-424.
[16] [16] Li X S, Wan L H, Li G, et al. Experimental investigation into the production behavior of methane hydrate in porous sediment with hot brine stimulation[J]. Industrial & Engineering Chemistry Research, 2008,47(23):9696-9702.
[17] [17] Lee J. Experimental study on the dissociation behavior and productivity of gas hydrate by brine injection scheme in porous rock[J]. Energy & Fuels, 2010,24(1):456-463.
[18] [18] Howell D G, Zink L L, Cole F. The Future of Energy Gases[M]. US Government Printing Office, 1993.
[19] [19] Makogon Y F, Holditch S A, Makogon T Y. Natural gas-hydrates—A potential energy source for the 21st Century[J]. Journal of Petroleum Science and Engineering, 2007,56(1-3):14-31.
[20] [20] Makogon I U F. Hydrates of Natural Gas[M]. Tulsa, Oklahoma: PennWell Books, 1981.
[21] [21] 李栋梁,唐翠萍,梁德青,等.天然气水合物抑制过程中甲醇用量的影响[J].石油化工,2009,38(12):1292-1296.
LI Dongliang, TANG Cuiping, LIANG Deqing, et al. Effect of methanol concentration on control of natural gas hydrate formation[J]. Petrochemical Technology, 2009,38(12):1292-1296.
[22] [22] Haghighi H, Chapoy A, Burgess R, et al. Phase equilibria for petroleum reservoir fluids containing water and aqueous methanol solutions: Experimental measurements and modelling using the CPA equation of state[J]. Fluid Phase Equilibria, 2009,278(1-2):109-116.
[23] [23] 马英瑞.神狐水合物藏降压开采影响因素研究[D].青岛:中国石油大学(华东),2020.MA Yingrui. Study on influencing factors of shenhu hydrate sediment by depressurization[D]. Qingdao: China University of Petroleum (East China), 2020.
[24] [24] Kim H.C., Bishnoi P.R., Heidemann R.A., al et, Kinetics of methane hydrate decomposition[J]. Chemical Engineering Science, 1987,42(7):1645-1653.
[25] [25] Uddin M, Coombe D A, Law D H S, et al. Numerical studies of gas-hydrates formation and decomposition in a geological reservoir[C]//
SPE Gas Technology Symposium .OnePetro , 2006.[26] [26] Van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980,44(5):892-898.
[27] [27] 宁伏龙,吴能友,李实等.基于常规测井方法估算原位水合物储集层力学参数[J].石油勘探与开发,2013,40(4):507-512.
NING Fulong, WU Nengyou, LI Shi, et al. Estimation of in-situ mechanical properties of gas hydrate-bearing sediments by well logging[J]. Petroleum Exploration and Development, 2013,40(4):507-512.
[28] [28] 刘佳丽.神狐海域水合物藏试开采方案优化的数值模拟研究[D].青岛:中国石油大学(华东),2018.LIU Jiali. Numerical study on optimization producing scheme of hydrate reservoirs in shenhu area[D]. Qingdao: China University of Petroleum (East China), 2018.
-
计量
- 文章访问数: 219
- PDF下载数: 37
- 施引文献: 0