地质出版社有限公司 中国地质科学院勘探技术研究所主办

海域天然气水合物降压开采诱发储层力学性质劣化及沉降规律建模研究

郭旭洋, 金衍, 卢运虎, 夏阳, 韦世明. 2023. 海域天然气水合物降压开采诱发储层力学性质劣化及沉降规律建模研究. 钻探工程, 50(6): 28-37. doi: 10.12143/j.ztgc.2023.06.004
引用本文: 郭旭洋, 金衍, 卢运虎, 夏阳, 韦世明. 2023. 海域天然气水合物降压开采诱发储层力学性质劣化及沉降规律建模研究. 钻探工程, 50(6): 28-37. doi: 10.12143/j.ztgc.2023.06.004
GUO Xuyang, JIN Yan, LU Yunhu, XIA Yang and WEI Shiming, . 2023. A modeling analysis of depressurization-induced mechanical property deterioration and subsidence in marine natural gas hydrate-bearing reservoirs. DRILLING ENGINEERING, 50(6): 28-37. doi: 10.12143/j.ztgc.2023.06.004
Citation: GUO Xuyang, JIN Yan, LU Yunhu, XIA Yang and WEI Shiming, . 2023. A modeling analysis of depressurization-induced mechanical property deterioration and subsidence in marine natural gas hydrate-bearing reservoirs. DRILLING ENGINEERING, 50(6): 28-37. doi: 10.12143/j.ztgc.2023.06.004

海域天然气水合物降压开采诱发储层力学性质劣化及沉降规律建模研究

  • 基金项目:

    国家自然科学基金重大项目课题“天然气水合物储层力学特征及多场耦合工程响应机制”(编号:51991362)

详细信息
    作者简介: 郭旭洋,男,汉族,1992年生,副教授,石油工程专业,博士,主要从事石油工程岩石力学和储层地质力学的教学和科研工作,北京市昌平区府学路18号,xguo@cup.edu.cn。

A modeling analysis of depressurization-induced mechanical property deterioration and subsidence in marine natural gas hydrate-bearing reservoirs

  • 降压法是海域天然气水合物储层开采的一种常见方法。降压开采会导致近井储层出现复杂的多物理场耦合响应,诱发压力变化、温度变化、水合物分解、储层力学性质劣化及地层沉降。本研究通过一种全耦合流固热化数值模型分析水平井筒降压导致的海域天然气水合物储层力学性质劣化及沉降特征,表征水平井筒及井周储层的多场耦合响应规律,明确储层力学性质劣化区域及沉降的影响因素。模拟结果显示:储层压力和温度变化的波及区域远大于水合物分解前缘,有效正应力的分布在不同方向差异明显,降压开采诱发的内聚力劣化区域与塑性区和水合物分解区关联程度高,水平井筒以浅区域和以深区域的沉降呈现出不同特征,沉降程度可相差5 mm以上。模拟结果对水平井降压开采海域天然气水合物的储层稳定性分析具有参考意义。
  • 加载中
  • [1]

    Boswell R., Hancock S., Yamamoto K., et al. Natural Gas Hydrates: Status of Potential as an Energy Resource[M]. Future Energy (Third Edition), 2019:111-131.

    [2]

    [2] Makogon, Y.F. Hydrates of Hydrocarbons[M]. Tulsa: PennWell Publishing Co. 1997.

    [3]

    [3] 齐赟,孙友宏,李冰,等.近井储层改造对天然气水合物藏降压开采特性影响的数值模拟研究[J].钻探工程,2021,48(4):85-96.

    QI Yun, SUN Youhong, LI Bing, et al. Numerical simulation of the influence of reservoir stimulation in the near wellbore area on the depressurization production characteristics of natural gas hydrate reservoir[J]. Drilling Engineering, 2021,48(4):85-96.

    [4]

    [4] 李子涵,潘栋彬,陈晨,等.采空区对CO2置换开采海域天然气水合物置换效果影响的实验研究[J].钻探工程,2022,49(1):88-95.

    LI Zihan, PAN Dongbin, CHEN Chen, et al. Influence of mined-out areas on the replacement performance of marine gas hydrate CO2 replacement mining[J]. Drilling Engineering, 2022,49(1):88-95.

    [5]

    [5] 张永田,陈晨,马英瑞,等.注入甲醇抑制剂法开采神狐海域天然气水合物数值模拟研究[J].钻探工程,2023,50(5):101-108.

    ZHANG Yongtian, CHEN Chen, MA Yingrui, et al. Numerical simulation of gas hydrate exploitation in the Shenhu Sea area by injecting methanol inhibitor[J]. Drilling Engineering, 2023,50(5):101-108.

    [6]

    [6] 叶建良,秦绪文,谢文卫,等.中国南海天然气水合物第二次试采主要进展[J].中国地质,2020,47(3):557-568.

    YE Jianliang, QIN Xuwen, XIE Wenwei, et al. Main progress of the second gas hydrate trial production in the South China Sea[J]. Geology in China, 2020,47(3):557-568.

    [7]

    [7] 李清平,周守为,赵佳飞,等.天然气水合物开采技术研究现状与展望[J].中国工程科学,2022,24(3):214-224.

    LI Qingping, ZHOU Shouwei, ZHAO Jiafen, et al. Research status and prospects of natural gas hydrate exploitation technology[J]. Strategic Study of CAE, 2022,24(3):214-224.

    [8]

    [8] 孙金声,程远方,秦绪文,等.南海天然气水合物钻采机理与调控研究进展[J].中国科学基金,2021,35(6):940-951.

    SUN Jinsheng, CHENG Yuanfang, QIN Xuwen, et al. Research progress on natural gas hydrate drilling & production in the South China Sea[J]. Bulletin of National Natural Science Foundation of China, 2021,35(6):940-951.

    [9]

    [9] 罗强,刘志辉,宁伏龙,等.天然气水合物储层超声雾化防砂排水采气实验研究[J].钻探工程,2022,49(3):23-28.

    LUO Qiang, LIU Zhihui, NING Fulong, et al. Sand control and water drainage by ultrasonic atomization for gas recovery from hydrate reservoirs[J]. Drilling Engineering, 2022,49(3):23-28.

    [10]

    [10] 袁益龙,许天福,辛欣,等.海洋天然气水合物降压开采地层井壁力学稳定性分析[J].力学学报,2020,52(2):544-555.

    YUAN Yilong, XU Tianfu, XIN Xin, et al. Mechanical stability analysis of strata and wellbore associated with gas production from oceanic hydrate-bearing sediments by depressurization[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):544-555.

    [11]

    [11] Rutqvist J., Moridis G. J. Numerical studies on thegeomechanical stability of hydrate-bearing sediments[C]//2007 Offshore Technology ConferenceHouston, TX; Offshore Technology Conference, 2007; Paper OTC-18860-MS.

    [12]

    [12] Kim J., Moridis G.J., Yang D., et al. Numerical studies on two-way coupled fluid flow and geomechanics in hydrate deposits[J]. SPE Journal,2012,17(2):485-501.

    [13]

    [13] Marcelo Sanchez, Carlos Santamarina, Mehdi Teymouri, et al. Coupled numerical modeling of gas hydrate-bearing sediments: From laboratory to field-scale analyses[J]. Journal of geophysical research. Solid earth: JGR, 2018,123(12):10326-10348.

    [14]

    [14] De La Fuente M, Vaunat J, MaríN-Moreno H. Thermo-hydro-mechanical coupled modeling of methane hydrate-bearing sediments: Formulation and application[J]. Energies, 2019,12(11):2178.

    [15]

    [15] Lijith K. P., Malagar Bhini R. C., Singh D.N. A comprehensive review on the geomechanical properties of gas hydrate bearing sediments[J]. Marine and Petroleum Geology, 2019,104270-285.

    [16]

    [16] Yan Chuanliang, Yang Li, Cheng Yuanfang, et al. Sand production evaluation during gas production from natural gas hydrates[J]. Journal of natural gas science and engineering, 2018,5777-88. DOI:10.1016/j.jngse.2018.07.006.

    [17]

    [17] Li Y., Ning F., Wu N., et al. Protocol for sand control screen design of production wells for clayey silt hydrate reservoirs: A case study. Energy Science & Engineering, 2020,8(5):1438-1449.

    [18]

    [18] 董辉,任旭云.基于DEM-CFD耦合方法的水合物与砂颗粒运动分析[J].山东科学,2022,35(3):123-130.

    DONG Hui, REN Xuyun. Analysis of hydrate and sand particle movement based on DEM-CFD coupling method[J]. Shandong Science, 2022,35(3):123-130.

    [19]

    [19] 郭旭洋,金衍,林伯韬,等.南海天然气水合物水平井降压开采诱发沉积物力学响应规律[J].中国石油大学学报(自然科学版),2022,46(6):41-47.

    GUO Xuyang, JIN Yan, LIN Botao, et al. Mechanical response of sediments induced by horizontal well depressurization of natural gas hydrate in South China Sea[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022,46(6):41-47.

    [20]

    [20] 李阳,程远方,闫传梁,等.南海神狐海域水合物地层多物理场耦合模型及井壁坍塌规律分析[J].中南大学学报(自然科学版),2022,53(3):976-990.

    LI Yang, CHENG Yuanfang, YAN Chuanliang, et al. Multi-physical field coupling model of hydrate formation and analysis of wellbore collapse law in Shenhu area of South China Sea[J]. Journal of Central South University (Science and Technology), 2022,53(3):976-990.

    [21]

    [21] 孙金,吴时国,朱林奇,等.天然气水合物降压开采中海床沉降特征及其影响因素[J].中南大学学报(自然科学版),2022,53(3):1033-1046.

    SUN Jin, WU Shiguo, ZHU Linqi, et al. Seafloor subsidence characteristics and its influencing factors during methane hydrate production by depressurization method[J]. Journal of Central South University (Science and Technology), 2022,53(3):1033-1046.

    [22]

    [22] 畅元江,黄帅,王康,等.天然气水合物试采井筒-土壤三维非线性耦合模型研究[J].中南大学学报(自然科学版),2022,53(3):942-951.

    CHANG Yuanjiang, HUANG Shuai, WANG Kang, et al. Study on 3D nonlinear coupling wellbore-soil model of natural gas hydrate production test[J]. Journal of Central South University (Science and Technology), 2022,53(3):942-951.

    [23]

    [23] Guo X., Jin Y., Zi J. et al. A 3D modeling study of effects of heterogeneity on system responses in methane hydrate reservoirs with horizontal well depressurization[J]. Gas Science and Engineering, 2023,115:205001.

    [24]

    [24] Guo X, Jin Y, Zi Jing, et al. Numerical investigation of the gas production efficiency and induced geomechanical responses in marine methane hydrate-bearing sediments exploited by depressurization through hydraulic fractures[J]. Energy & Fuels, 2021,35(22):18441-18458.

  • 加载中
计量
  • 文章访问数:  128
  • PDF下载数:  20
  • 施引文献:  0
出版历程
收稿日期:  2023-10-25
修回日期:  2023-11-09

目录