地质出版社有限公司 中国地质科学院勘探技术研究所主办

基于PCA-LM-BP神经网络的岩石可钻性预测研究

蒲先渤, 李泽群, 尹飞, 范杰, 曹鲁刚, 智亮. 2023. 基于PCA-LM-BP神经网络的岩石可钻性预测研究. 钻探工程, 50(6): 64-69. doi: 10.12143/j.ztgc.2023.06.008
引用本文: 蒲先渤, 李泽群, 尹飞, 范杰, 曹鲁刚, 智亮. 2023. 基于PCA-LM-BP神经网络的岩石可钻性预测研究. 钻探工程, 50(6): 64-69. doi: 10.12143/j.ztgc.2023.06.008
PU Xianbo, LI Zequn, YIN Fei, FAN Jie, CAO Lugang and ZHI Liang, . 2023. Research on rock drill ability prediction based on PCA-LM-BP neural network. DRILLING ENGINEERING, 50(6): 64-69. doi: 10.12143/j.ztgc.2023.06.008
Citation: PU Xianbo, LI Zequn, YIN Fei, FAN Jie, CAO Lugang and ZHI Liang, . 2023. Research on rock drill ability prediction based on PCA-LM-BP neural network. DRILLING ENGINEERING, 50(6): 64-69. doi: 10.12143/j.ztgc.2023.06.008

基于PCA-LM-BP神经网络的岩石可钻性预测研究

  • 基金项目:

    中国地质调查局地质调查项目“战略性矿产靶区查证技术支撑(廊坊自然资源综合调查中心)”(编号:040904)

详细信息
    作者简介: 蒲先渤,男,汉族,1985年生,二级技师,钻探工程专业,从事深孔钻探工作,河北省廊坊市广阳区广阳道93号,780210243@qq.com。

Research on rock drill ability prediction based on PCA-LM-BP neural network

  • 预测岩石的可钻性等级能够为钻探工程项目的开展提供有效帮助,根据岩石的可钻性等级选择合理的工艺、方法、技术为项目提供技术支撑。本文考虑岩石在地下空间中受复杂环境因素影响,从地球物理勘探数据、岩石的力学性质和物理性质中选择5种影响岩石可钻性的等级因素,用主成分分析法(PCA)解释每种影响因素之间的相关性及贡献率,消除5种影响因素之间的相关性,选择相关性低的3个主成分代替数据样本进行预测评价。编写LM-BP算法,合理设置预测模型参数值,以主成分分析后的数据样本作为基础,建立岩石可钻性等级预测模型,对预测结果与室内实验法的实测结果进行分析对比,经分析得知,PCA-LM-BP预测模型在岩石可钻性等级预测中,具有预测精准度高、预测时间短的特点,可被应用于钻探工程中的岩石可钻性分析。
  • 加载中
  • [1]

    王颖颖,庄毅,孙逸帆.基于粒子群优化BP神经网络的可靠性评估模型[J].计算机与现代化,2022(12)42-49.

    WANG Yingying, ZHUANG Yi, SUN Yifan. Reliability evaluation model of BP network based on particle swarm optimization[J]. Comppuer and Modernization, 2022(12):42-49.

    [2]

    [2] Clarissa Cagnato, Pascal Nlend, François Ngouoh, et al. Analysis of Early Iron Age (2500 BP) and modern period (150 BP) starch grains in Western Central Africa[J]. Scientific Reports, 2022,12(1).

    [3]

    [3] 孔祥伟,陈昊,叶佳杰,等.基于PCA预测岩石可钻性级值的钻头优选[J].新疆石油天然气,2022,18(3):6-11.

    KONG Xiangwei, CHEN Hao, YE Jiajie, et al. Bit selection based on PCA to predict drillability level of hard rockes[J]. Xinjiang Oil & Gas, 2022,18(3):6-11.

    [4]

    [4] 岳永东,渠洪杰,谭春亮,等.基于支持向量机的测井岩性识别在松散沉积物调查中的应用研究[J].钻探工程,2021,48(4):29-36.

    YUE Yongdong, QU Hongjie, TAN Chunliang, et al. Application of logging lithology identification based on support vector machines in unconsolidated sediment investigation[J]. Drilling Engineering, 2021,48(4):29-36.

    [5]

    [5] YANG Zonglin, SHI Yaqi, LI Pinglin, et al. Application of Principal Component Analysis(PCA) to the Evaluation and Screening of Multiactivity Fungi[J]. Journal of Ocean University of China, 2022,21(3):763-772.

    [6]

    [6] 冯上鑫,王善勇.旋切作用下岩石破碎机理及岩石可钻性的试验研究[J].煤炭学报,2022,47(3):1395-1404.

    FENG Shangxin, WANG Shanyong. Experimental study of rock-bit interaction mechanism for rock drillability assessment in rotary drilling[J]. Journal of China Coal Society, 2022,47(3):1395-1404.

    [7]

    [7] Miyajima Hirofumi, Shigei Noritaka, Miyajima Hiromi, et al. Simplified Secure Distributed Processing of BP with Decomposition Data[J]. IEICE Proceeding Series, 2022,71.

    [8]

    [8] 王亚飞,张占荣,刘华吉,等.基于模型融合的钻进参数识别岩石类型研究[J].钻探工程,2023,50(2):17-25.

    WANG Yafei, ZHANG Zhanrong, LIU Huaji, et al. Data-driven model for the identification of the rock type by drilling data[J]. Drilling Engineering, 2023,50(2):17-25.

    [9]

    [9] 许梦国,刘红阳,王平,等.基于RES理论的岩石可钻性综合预测研究[J].金属矿山,2022(1):113-119.

    XU Mengguo, LIU Hongyang, WANG Ping, et al. Comprehensive predictiond study on rock drillability based on RES theory[J]. Metal Mine, 2022(1):113-119.

    [10]

    [10] 王林清,马汉臣,许本冲,等.浅海伸缩套管钻探工艺研究[J].钻探工程,2021,48(7):40-45.

    WANG Linqing, MA Hanchen, XU Benchong, et al. Research on shallow sea drilling technology with telescopic casing[J]. Drilling Engineering, 2021,48(7):40-45.

    [11]

    [11] 李谦,曹彦伟,朱海燕.基于人工智能的钻速预测模型数据有效性下限分析[J].钻探工程,2021,48(3):21-30.

    LI Qian, CAO Yanwei, ZHU Haiyan. Discussion on the lower limit of data validity for ROP prediction based on artificial intelligence[J]. Drilling Engineering, 2021,48(3):21-30.

    [12]

    [12] FANG Xinxin, FENG Hong, WANG Hao. Study on intelligent prediction method of rock drillability based on Bayesian lithology classification and optimized BP neural network[J]. Petroleum Science and Technology, 2022,40(13/18):2141-2162.

    [13]

    [13] Karrari Seyed Sajjad, Mojtaba Heidari, Hamidi Jafar Khademi, et al. Predicting geomechanical, abrasivity, and drillability properties in some igneous rocks using fabric features and petrographic indexes[J]. Bulletin of Engineering Geology and the Environment, 2023,82(4).

    [14]

    [14] Hemmat Esfe Mohammad, Fatemeh Amoozadkhalili, Davood Toghraie. Determining the optimal structure for accurate estimation of the dynamic viscosity of oil-based hybrid nanofluid containing MgO and MWCNTs nanoparticles using multilayer perceptron neural networks with Levenberg-Marquardt Algorithm[J]. Powder Technology, 2023,415.

    [15]

    [15] Claire Livet, Théo Rouvier, Christophe Sauret, et al. A penalty method for constrained multibody kinematics optimization using a Levenberg-Marquardt algorithm[J]. Computer methods in biomechanics and biomedical engineering,2022.

    [16]

    [16] Drubin Cliff. LM selected to prototype next-generation USMC 5G communications[J]. Microwave Journal, 2022,65(4).

    [17]

    [17] Ankush Gupta, Abhinav Shrivastava, Sanya Chhikara. TCT-341 OCT predictors of side branch restenosis during LM bifurcation angioplasty using DK crush technique[J]. Journal of the American College of Cardiology, 2021,78(19S).

    [18]

    [18] 周游,张广智,高刚,等.核主成分分析法在测井浊积岩岩性识别中的应用[J].石油地球物理勘探,2019,54(3):667-675.

    ZHOU You, ZHANG Guangzhi, GAO Gang, et al. Application of kernel principal component analysis method in lithologic identification of turbidite in logging[J]. Petroleum Geophysical Exploration, 2019,54(3):667-675.

    [19]

    [19] 张俊虎,刘赟玥,王玲玲,等.基于属性核特征选择与隐含层节点数动态确定的BP神经网络模型[J].青岛科技大学学报(自然科学版),2021,42(4):113-118.

    ZHANG Junhu, LIU Yunyue, WANG Lingling, et al. BP neural network model based on attribute core feature selection and dynamic determination of hidden layer node number[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2021,42(4):113-118.

    [20]

    [20] 夏宏泉,刘之的,陈平,等.基于BP神经网络的岩石可钻性测井计算研究[J].测井技术,2004(2):148-150,157-179.

    XIA Hongquan, LIU Zhidi, CHEN Ping, et al. On calculating rock drill ability from log data based on BP neural network technology[J]. Well Logging Technology, 2004(2):148-150,157-179.

  • 加载中
计量
  • 文章访问数:  103
  • PDF下载数:  12
  • 施引文献:  0
出版历程
收稿日期:  2023-05-06
修回日期:  2023-07-20

目录