Analysis and understanding of factors affecting sandstone-type thermal storage recharge
-
摘要: 沁水盆地太原组15号煤层总体低压低渗低饱和,煤储层相对较薄,地质条件复杂,煤层气井产量普遍偏低。以沁水盆地郑庄区块为研究对象,依据本区15号煤层LDP-22H多分支水平井的成功开发经验,全面论述低压低渗煤储层煤层气钻完井工艺、标志层判定、井眼轨迹控制等关键技术。结果表明:采用钻井-录井-测井一体化地质导向技术可以有效卡准目的煤层,同时实时修正钻头轨迹,煤层平均钻遇率在97%以上,极大地提升了煤层有效进尺。865 d的排采实践表明,LDP-22H多分支水平井日产气量突破15万m3,日产气量稳定在8万m3左右,全程累计产气量为2091.5469.3 万m3,实现了超高产和稳产,标志着多分支水平井在低压低渗煤储层煤层气高效开发上有较好的适用性。另一方面,多分支水平井要优化井位,加强水平井底部位排采能力,稳定压降速率,减小对煤储层渗透率敏感性伤害,提高排采的连续性,减少停泵和检修作业频次,保证产能的延续性。Abstract: The No.15 coal bed of Taiyuan Formation in Qinshui Basin is generally feathured with low-pressure, low-permeability and low-saturation. The coal reservoir is relatively thin with complex geological conditions, and the coal bed methane (CBM) production is commonly low. Taken the Zhengzhuang Block in Qinshui Basin as the example, the key technology of CBM drilling and completion technology, marker formation determination, and well trajectory control in low pressure and low permeability coal reservoir are discussed comprehensively based on the successful experience of the LDP-22H multi-branch horizontal well in No.15 coal bed.The results show that the integrated geosteering technology of drilling and logging can effectively fix the target coal bed and modify the bit track in real time, which can improve the average drilling rate to above 97% and greatly improve the effective footage. The 865-day drainage and production practice shows that the daily gas production of the LDP-22H multi branch horizontal well has exceeded 150,000 m3, the current daily gas production is stable at about 80,000 m3, and the total cumulative gas production is 20915469.3 m3, achieving ultra-high and stable production, which marks good applicability of the multi branch horizontal well in the efficient development of CBM in low-pressure and low-permeability coal reservoirs. Moreover, it is necessary to optimize the well position, strengthen the drainage and production capacity at the bottom of the horizontal well, stabilize the pressure drop rate, reduce the sensitivity damage to the permeability of the coal reservoir, improve the continuity of drainage and production, reduce pump downtime and the frequency of maintenance operations, and ensure the continuity of production capacity.
-
-
[1] 王贵玲,李郡,吴爱民,等.河北容城凸起区热储层新层系——高于庄组热储特征研究[J].地球学报,2018,39(7):533-541.
WANG Guiling, LI Jun, WU Aimin, et al. A Study of the therml storage characteristics of Gaoyuzhuang Formation, a new layer system of thermal reservoir in Rongcheng Uplift Area of Hebei Province[J]. Acta Geoscientiea Sinica, 2018,39(5):533-541.
[2] [2] 马峰,王贵玲,张薇,等.雄安新区容城地热田热储空间结构及资源潜力[J].地质学报,2020,94(7):1981-1990.
MA Feng, WANG Guiling, ZHANG Wei, et al. Structure of geothermal reservoirs and resource potential in the Rongcheng Geothermal Field in Xiong’an New Area[J]. Acta Geologica Sinica, 2020,94(7):1981-1990.
[3] [3] 赵佳怡,张薇,马峰,等.雄安新区容城地热田地热流体化学特征[J].地质学报,2020,94(7):1991-2001.
ZHAO Jiayi, ZHANG Wei, MA Feng, et al. Geochemical characteristics of the geothermal fluid in the Rongcheng Geothermal Field, Xiong ’an New Area[J]. Acta Geologica Sinica, 2020,94(7):1991-2001.
[4] [4] 王刚,宋佳,王盼盼,等.浅层地热能开发回灌井施工技术研究——以郑州市东,西部新城区为例[J].钻探工程,2022,49(6):153-161.
WANG Gang, SONG Jia, WANG Panpan, et al. Drilling technology for recharge wells in shallow geothermal energy development: A case study of the new districts in the east and west of Zhengzhou[J]. Drilling Engineering, 2022,49(6):153-161.
[5] [5] 赵苏民,程万庆,张伟.新近系砂岩热储地热回灌堵塞问题的剖析[J].地热能,2013(6):6.ZHAO Sumin, CHENG Wanqing, ZHANG Wei. Analysis of geothermal recharge blockage in the Neogene sandstone thermal storage[J]. Geothermal Energy, 2013(6):6.
[6] [6] 张平平,王秀芹.回灌水温对砂岩热储回灌效果的影响分析——以德州市地热田馆陶组热储为例[J].山东国土资源,2015,31(6):4.ZHANG Pingping, WANG Xiuqin. Analysis of the influence of reinjection water temperature on the reinjection effect of sandstone thermal storage: Taking the Guantao formation thermal storage in the geothermal field of Dezhou City as an example[J]. Shandong Land and Resources, 2015,31(6):4.
[7] [7] 贺淼,张乐,袁一鸣,等.东营市南展区砂岩热储地热回灌量与温度的关系探讨[J].山东国土资源,2018,34(1):5.HE Miao, ZHANG Le, YUAN Yiming, et al. Discussion on the relationship between geothermal recharge volume and temperature of sandstone thermal storage in Nanzhan District, Dongying City[J]. Shandong Land and Resources, 2018,34(1):5.
[8] [8] 云钏,汤勇,陈国富,等.黄骅市新近系砂岩热储回灌能力分析[J].中国高新区,2017(11X):2.YUN Chuan, TANG Yong, CHEN Guofu, et al. Analysis of the thermal storage and recharge capacity of the Neogene sandstone in Huanghua City[J]. China High Tech Zone, 2017,(11X):2.
[9] [9] 冯守涛,王成明,杨亚宾,等.砂岩热储回灌对储层影响评价——以鲁西北坳陷地热区为例[J].地质学报,2019(S1):10.FENG Shoutao, WANG Chengming, YANG Yabin, et al. Evaluation of the impact of sandstone thermal reservoir recharge on reservoirs: Taking the geothermal region of the northwest Shandong Depression as an example[J]. Journal of Geology, 2019(S1):10.
[10] [10] 陈莹,王攀科,吴烨,等.河南兰考地区地热回灌影响因素分析及对策[J].钻探工程,2022,49(6):146-152.
CHEN Ying, WANG Panke, WU Ye, et al. Analysis and countermeasures on influencing factors of geothermal well reinjection in Lankao, Henan Province[J]. Drilling Engineering, 2022,49(6):146-152.
[11] [11] 肖鹏,窦斌,田红,等.地热储层单裂隙岩体渗流传热数值模拟研究[J].钻探工程,2021,48(2):16-28.
XIAO Peng, DOU Bin, TIAN Hong, et al. Numerical simulation of seepage and heat transfer in single fractured rock mass of geothermal reservoirs[J]. Drilling Engineering, 2021,48(2):16-28.
[12] [12] 俱养社,张玉贵.韩城地区中深层钻井取热供暖关键技术[J].钻探工程,2021,48(12):79-85.
JU Yangshe, ZHANG Yugui. Key technology for mid-deep drilling geothermal heat extraction in the Hancheng area[J]. Drilling Engineering, 2021,48(12):79-85.
[13] [13] 王磊.中深层砂岩热储回灌井参数优化模拟[J].科学技术与工程,2023,23(5):10.WANG Lei. Optimization simulation of parameters for thermal storage and reinjection wells in mid to deep sandstone[J]. Science, Technology and Engineering, 2023,23(5):10.
[14] [14] 高新智.天津市孔隙型砂岩热储回灌能力评价模型研究[D].北京:中国地质大学(北京),2018.GAO Xinzhi. Research on the evaluation model of thermal storage and recharge capacity of porous sandstones in Tianjin[D]. Beijing: China University of Geosciences (Beijing), 2018.
[15] [15] 丁亮,赵彦涛,刘小康.移动式地热尾水回灌装置的研制与应用[J].钻探工程,2023,50(3):124-129.
DING Liang, ZHAO Yantao, LIU Xiaokang. Development and application of mobile geothermal tail water reinjection device[J]. Drilling Engineering, 2023,50(3):124-129.
[16] [16] 乌效鸣,蔡记华,胡郁乐.钻井液与岩土工程浆材[M].武汉:中国地质大学出版社,2014.WU Xiaoming, CAI Jihua, HU Yule. Drilling Fluid and Geotechnical Engineering Grout[M]. Wuhan: China University of Geosciences Press, 2014.
[17] [17] 李砚智,张长茂.GYx地热并钻井液技术[J].探矿工程(岩土钻掘工程,2019,46(1):61-66.
LI Yanzhi, ZHANG Changmao. Drlling fluid technology for geothermal well GYx[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2019,46(1):61-66.
[18] [18] 胡童颖,董向宇,冉恒谦,等.地热井钻井液对井壁温度分布的影响研究[J].探矿工程(岩土钻掘工程),2020,47(1);20-25.
HU Tongying, DONG Xiangyu, RAN Hengqian, et al. Study on influence of drilling fluids on temperature distribution over the borehole wall in geothermal wells[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2020,47(1):20-25.
[19] [19] 战启帅,宋天培.YR1地热井断层性漏失封堵技术[J].钻探工程,2021,48(11):72-76.
ZHAN Qishuai, SONG Tianpei. Fault type circulation loss plugging technology for YR1 geothermal well[J]. Drilling Engineering, 2021,48(11):72-76.
[20] [20] 齐恭,李杨,李珺,等.砂岩型出水地热井和回灌井施工方法:
CN113153223.4 [P].2021-03-23 .QI Gong, LI Yang, LI Jun, et al. Construction method for sandstone type geothermal and reinjection wells:
CN113153223.4 [P].2021-03-23 .[21] [21]
[S].DZ/T 0260—2014 ,地热钻探技术规程 [S].DZ/T 0260—2014 ,Technical regulations for geothermal drilling -
计量
- 文章访问数: 111
- PDF下载数: 8
- 施引文献: 0