西秦岭宕昌–舟曲地区晚三叠世埃达克质花岗岩年代学、地球化学特征及其构造意义

张梓尧, 张义虎, 徐磊, 王怀涛. 2024. 西秦岭宕昌–舟曲地区晚三叠世埃达克质花岗岩年代学、地球化学特征及其构造意义. 西北地质, 57(5): 232-247. doi: 10.12401/j.nwg.2023013
引用本文: 张梓尧, 张义虎, 徐磊, 王怀涛. 2024. 西秦岭宕昌–舟曲地区晚三叠世埃达克质花岗岩年代学、地球化学特征及其构造意义. 西北地质, 57(5): 232-247. doi: 10.12401/j.nwg.2023013
ZHANG Ziyao, ZHANG Yihu, XU Lei, WANG Huaitao. 2024. Geochronology, Geochemistry and Tectonic Significance of Late Triassic Adakite Granites in Tanchang-Zhouqu area of West Qinling. Northwestern Geology, 57(5): 232-247. doi: 10.12401/j.nwg.2023013
Citation: ZHANG Ziyao, ZHANG Yihu, XU Lei, WANG Huaitao. 2024. Geochronology, Geochemistry and Tectonic Significance of Late Triassic Adakite Granites in Tanchang-Zhouqu area of West Qinling. Northwestern Geology, 57(5): 232-247. doi: 10.12401/j.nwg.2023013

西秦岭宕昌–舟曲地区晚三叠世埃达克质花岗岩年代学、地球化学特征及其构造意义

  • 基金项目: 甘肃省级基础地质调查项目“甘肃省肃北县大一明镇–白头山地区1:5万区域地质矿产调查”(甘资字〔2023〕37号)和中国地质调查局项目“东天山昌吉–双沟山地区区域地质调查”(DD20190065)联合资助。
详细信息
    作者简介: 张梓尧(1990−),女,讲师,研究方向为矿物学、岩石学与矿床学和科技类文献研究与翻译。E−mail:samanthas@qq.com
    通讯作者: 徐磊(1986−),男,高级工程师,主要从事区域地质调查和矿产勘探研究工作。E−mail:397315452@qq.com
  • 中图分类号: P588.121;P597.3

Geochronology, Geochemistry and Tectonic Significance of Late Triassic Adakite Granites in Tanchang-Zhouqu area of West Qinling

More Information
  • 西秦岭造山带位于秦岭–大别造山带西段,其印支期花岗岩研究对认识中央造山带的构造演化具有十分重要的意义。笔者选择西秦岭宕昌–舟曲地区的燕麦层与憨班花岗岩体进行了岩相学、LA-ICP-MS锆石U-Pb年代学、地球化学的研究。结果表明,燕麦层的二长闪长岩、憨班的花岗闪长岩,具有高Al2O3、MgO,Mg#<45,富钠贫钾的特征,主体为亚碱性–碱性系列,准铝质–弱过铝质I型花岗岩,轻稀土高度富集,弱Eu负异常,富集Th、K、U等LILE;HFSE中强烈亏损Nb、Ta、P和Ti元素。锆石U-Pb同位素测年结果显示燕麦层与憨班岩体分别形成于(219.4±1.5)Ma和(222.1±1.9)Ma,其侵位时间为晚三叠世中期。综合地质、地球化学和年代学特征,研究区花岗岩体为后碰撞环境,可能形成于增厚地壳下部岩石圈地幔拆沉、软流圈上涌加热下地壳部分熔融的环境下。

  • 加载中
  • 图 1  西秦岭造山带构造划分图及研究区地质图

    Figure 1. 

    图 2  燕麦层与憨班花岗岩照片

    Figure 2. 

    图 3  憨班与燕麦层花岗岩锆石CL图像

    Figure 3. 

    图 4  憨班(a)与燕麦层(b)锆石U-Pb年龄谐和图

    Figure 4. 

    图 5  宕昌花岗岩分类图解(部分数据引自刘明强,2012

    Figure 5. 

    图 6  微量元素原始地幔标准化蛛网图(a)与稀土元素球粒陨石表转化分布型式图(b)

    Figure 6. 

    图 7  宕昌花岗岩哈克图解

    Figure 7. 

    图 8  Sr/Y-Y图解(a)、 (La/Yb)N-YbN图解(b)、Sr-Yb图解(c)(张旗等,2012)与(Dy/Yb)N-(La/Yb)N图解(d) (标准化数值据源自Sun等,1989

    Figure 8. 

    图 9  宕昌花岗岩岩石Nb-Y判别图解(a)与Ta-Yb判别图解(b)(Pearce et al.,1984

    Figure 9. 

    图 10  西秦岭220~215 Ma所处的转换拉伸构造复原图

    Figure 10. 

    表 2  花岗岩的主量 (%)、稀土和微量元素(10−6)

    Table 2.  Major (%) and trace elements (10−6) data for the granite in Tanchang

    元素YMC1YMC2HB1HB2HB3HB4RSG1RSG2RSG3
    SiO253.9654.9070.9872.9973.2067.7858.9460.4862.92
    Al2O318.5917.714.1914.4114.7515.5015.8415.6515.40
    Fe2O31.542.961.320.280.200.611.511.360.63
    FeO6.405.141.851.670.782.025.124.504.93
    CaO6.766.381.741.231.512.565.003.823.11
    MgO3.353.480.800.250.251.103.342.842.27
    K2O3.493.754.064.574.264.794.504.724.79
    Na2O3.193.123.993.973.924.132.883.283.13
    TiO20.8630.9100.3360.1290.1200.4300.7960.6910.591
    P2O50.4090.3360.1310.0380.0530.2000.2930.2360.188
    MnO0.1190.1240.0570.0270.0210.0590.1140.1030.089
    LOI0.240.250.070.060.200.200.791.481.09
    Cr36.0040.5062.708.712.9725.9087.8049.0035.80
    Ni14.8014.9011.502.5722.1022.0012.2016.2010.20
    Co26.1027.005.541.223.455.1316.7017.0015.30
    Li35.931.8166.068.995.670.539.531.841.0
    Rb23.737.5193.0288.0191.0180.069.141.831.0
    Cs4.433.9624.101.8419.8010.7010.206.178.95
    Sr794779292198224912557472333
    Ba868751724768846139085311821045
    V154.0186.041.027.25.346.0110.0122.0110.0
    Sc9.8910.602.290.922.174.658.248.506.83
    Nb18.415.127.648.710.419.326.420.420.9
    Ta1.120.852.361.071.351.311.711.461.67
    Zr208.0264.0302.01270.084.9282.0350.0251.0215.0
    Hf5.116.028.3828.102.716.438.606.465.91
    Be2.442.2410.308.637.086.913.713.043.04
    U5.153.624.5629.603.5010.409.266.778.43
    Th14.6012.8017.7049.908.6326.3328.1021.1020.80
    La54.348.657.617.617.180.876.257.349.0
    Ce103.091.4106.033.232.6152.0142.0106.088.0
    Pr11.2010.2010.803.623.7516.9014.0010.808.95
    Nd47.6043.9043.5015.0013.2059.1055.2043.1035.50
    Sm8.287.847.323.182.9810.009.147.236.08
    Eu2.172.001.580.690.732.381.861.571.44
    Gd6.626.275.732.542.367.387.606.055.07
    Tb0.860.840.680.330.300.910.980.780.67
    Dy4.254.222.971.431.464.325.003.943.37
    Ho0.790.780.500.210.240.760.960.740.64
    Er2.102.101.290.520.551.912.662.041.75
    Tm0.300.300.180.070.070.250.400.300.27
    Yb1.781.791.030.360.431.702.401.821.57
    Lu0.270.280.160.060.060.250.370.290.25
    Y18.5018.3012.205.446.9621.6023.5018.2015.40
    ΣREE262.02238.82251.5484.2582.79352.60342.27260.16217.96
    LREE226.55203.94226.8073.2970.36313.56298.40226.00188.97
    ΣY35.4734.8824.7410.9612.4339.0443.8734.1628.99
    (La/Yb)N20.1417.9436.7132.1428.5334.0920.9520.7920.6
    δEu0.880.850.730.730.810.810.670.710.78
    δCe0.940.920.950.930.950.960.960.950.93
     注:样品HB3和HB4数据引自刘明强,2012
    下载: 导出CSV

    表 1  宕昌花岗岩的LA-ICP-MS锆石U-Pb同位素分析结果

    Table 1.  LA-ICP-MS zircon U-Pb analytic for granite in Tanchang

    分析号207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th
    YMC010.052500.001280.247960.006090.034210.000460.011440.00057307.254.31224.94.95216.92.89229.911.45
    YMC020.054070.001320.253280.006250.033930.000460.010820.00052373.754.04229.25.06215.12.88217.610.40
    YMC030.054320.000870.261640.004460.034890.000440.013560.00049384.235.39236.03.59221.12.72272.39.730
    YMC040.051140.000920.242340.004560.034320.000440.010420.00037247.340.87220.33.73217.52.72209.67.330
    YMC050.051050.000800.240770.004060.034150.000430.011210.00040243.235.85219.03.32216.52.66225.47.950
    YMC060.053670.001420.253670.006730.034280.000480.009990.00048357.258.62229.65.45217.32.99200.99.670
    YMC070.052490.001110.248310.005360.034310.000450.009440.00049306.647.17225.24.36217.52.83190.09.830
    YMC080.051190.000790.241430.004030.034210.000430.010910.00040249.635.28219.63.30216.82.67219.48.020
    YMC090.053130.000900.256560.004590.035030.000440.009860.00049334.237.78231.93.71221.92.77198.39.800
    YMC100.049260.001150.232700.005500.034260.000460.010220.00037160.353.57212.44.53217.22.86205.47.490
    YMC110.052080.000780.251460.004070.035020.000440.011270.00033288.833.88227.83.30221.92.72226.46.500
    YMC120.051170.000880.245000.004450.034730.000440.010690.00047248.339.30222.53.63220.12.76215.09.470
    YMC130.050590.000810.243470.004160.034910.000440.010570.00041222.336.66221.33.39221.22.73212.58.270
    YMC140.049670.000980.239910.004860.035040.000460.010520.00035179.545.20218.33.98222.02.84211.66.940
    YMC150.049990.000860.233750.004210.033920.000430.010780.00041194.339.54213.33.47215.02.69216.88.280
    YMC160.049760.001040.242880.005240.035360.000460.011020.00061183.648.18220.84.28224.02.87221.512.13
    YMC170.051580.000840.252160.004380.035460.000450.010990.00034266.637.12228.33.55224.72.79220.96.760
    YMC180.051630.001100.250900.005420.035250.000470.011040.00045269.048.02227.34.40223.32.91222.09.060
    HB010.053050.001890.257530.009060.035230.000540.011780.00074331.078.97232.77.31223.23.36236.714.74
    HB020.051560.000900.252140.004610.035490.000450.013670.00063266.039.57228.33.74224.82.80274.412.66
    HB030.070920.001130.356380.006000.036470.000460.022570.00091955.132.40309.54.49230.92.88451.118.00
    HB040.109410.001442.558720.037010.169720.002130.071670.001951789.623.741288.910.56101111.72139936.70
    HB050.050210.001190.248880.005990.035970.000480.014140.00062204.954.29225.74.87227.83.00283.812.31
    HB060.048560.000880.236080.004460.035290.000450.012840.00063126.442.18215.23.67223.62.80257.812.50
    HB070.050650.000810.247800.004220.035500.000440.013060.00040225.136.59224.83.43224.92.76262.27.900
    HB080.074710.001350.540700.010130.052520.000690.019540.001111060.736.06438.96.67330.04.20391.221.97
    HB090.051450.000800.254470.004220.035890.000450.012160.00042260.935.23230.23.42227.32.78244.38.290
    HB100.050570.000730.245860.003870.035280.000440.010970.00020221.133.19223.23.15223.52.71220.54.000
    HB110.051140.000700.240330.003620.034100.000420.010410.00037247.131.20218.72.96216.12.60209.47.410
    HB120.052460.000850.249710.004270.034530.000430.011370.00033305.736.25226.33.47218.82.69228.66.510
    HB130.050770.000830.244630.004240.034960.000440.009860.00031230.337.34222.23.46221.52.73198.26.220
    HB140.052690.000710.253010.003780.034830.000430.010940.00027315.530.47229.03.06220.72.66219.95.330
    HB150.115350.001360.592370.007950.037250.000450.022150.000401885.421.13472.45.07235.82.83442.77.840
    HB160.052580.000760.257210.004040.035480.000440.011760.00029310.732.50232.43.26224.72.73236.35.840
    HB170.052490.000810.249830.004150.034520.000430.011170.00029306.834.89226.43.37218.82.68224.65.720
    HB180.052370.000630.250430.003430.034680.000420.010390.00016301.527.08226.92.78219.82.61208.93.170
    HB190.051220.000710.244190.003730.034570.000420.011330.00033250.731.68221.83.04219.12.64227.76.540
    下载: 导出CSV
  • [1]

    邓晋福, 刘厚祥, 赵海玲, 等. 燕辽地区燕山期火成岩与造山模型[J]. 现代地质, 1996, 10(02): 137-148

    DENG Jinfu, LIU Houxiang, ZHAO Hailing et al. Yanshanian igneous rocks and orogeny model in Yanshan-Liaoning area[J]. Geoscience, 1996, 10(02): 137-148.

    [2]

    冯益民, 曹宣铎, 张二朋, 等. 西秦岭造山带结构造山过程及动力学[M]. 西安: 西安地图出版社, 2002, 1−263

    [3]

    冯益民, 曹宣铎, 张二朋, 等. 西秦岭造山带的演化、构造格局和性质[J]. 西北地质, 2003, 36(01): 1-10 doi: 10.3969/j.issn.1009-6248.2003.01.001

    FENG Yimin, CAO Xuanduo, ZHANG Erpeng, et al. Tectonic evolution framework and nature of the West Qinling Orogenic Belt[J]. Northwestern Geology, 2003, 36(01): 1-10. doi: 10.3969/j.issn.1009-6248.2003.01.001

    [4]

    冯小明, 李注苍, 齐建宏. 西秦岭德乌鲁岩体成因及地质意义——来自岩石地球化学的证据[J]. 岩石矿物学杂志, 2021, 40(02): 347-362 doi: 10.3969/j.issn.1000-6524.2021.02.012

    FENG Xiaoming, LI Zhucang, QI Jianhong. The origin and geological significance of the Dewulu pluton in West Qinling: Evidence from petrogeochemistry[J]. Acta Petrologica ET Mineralogica, 2021, 40(02): 347-362. doi: 10.3969/j.issn.1000-6524.2021.02.012

    [5]

    黄雄飞, 莫宣学, 喻学惠, 等. 西秦岭宕昌地区晚三叠世酸性火山岩的锆石U-Pb年代学、地球化学及其地质意义[J]. 岩石学报, 2013, 29(11): 3968-3980

    HUANG Xiongfei, MO Xuanxue, YU Xuehui, et al. Zircon U-Pb chronology, geochemistry of the Late Triassic acid volcanic rocks in Tanchang area, West Qinling and their geological signicance[J]. Acta Petrologica Sinica, 2013, 29(11): 3968-3980.

    [6]

    李永军, 李注苍, 丁仨平, 等. 西秦岭温泉花岗岩体岩石学特征及岩浆混合标志[J]. 地球科学与环境学报, 2004, 23(03): 7-12 doi: 10.3969/j.issn.1672-6561.2004.03.002

    LI Yongjun, LI Zhucang, DING Sanping, et al. Petrology fetures and magma mingling marks of the Wenquan granite from western Qinling[J]. Journal of Earth Sciences and Environment, 2004, 23(03): 7-12. doi: 10.3969/j.issn.1672-6561.2004.03.002

    [7]

    金维浚, 张旗, 何登发, 等. 西秦岭埃达克岩的SHRIMP定年及其构造意义[J]. 岩石学报, 2005, 21(03): 959-966 doi: 10.3321/j.issn:1000-0569.2005.03.033

    JIN Weijun, ZHANG Qi, HE Dengfa, et al. SHRIMP dating of adakites in western Qinling and their implications[J]. Acta Petrologica Sinica, 2005, 21(03): 959-966. doi: 10.3321/j.issn:1000-0569.2005.03.033

    [8]

    李曙光, 孙卫东, 张国伟, 等. 南秦岭勉略构造带黑沟峡变质火山岩的年代学和地球化学——古生代洋盆及其闭合时代的证据[J]. 中国科学(D辑: 地球科学), 1996, 26(03): 223-230

    LI Shuguang, SUN Weidong, ZHANG Guowei, et al. Chronology and geochemistry of metamorphic rocks from Heigouxia vally in the Mian-Lue tectonic zone, South Qinling evidence for a Paleozoic ocean basin and its close time[J]. Science in China(Series D), 1996, 26(03): 223-230.

    [9]

    柳小明, 高山, 袁洪林, 等. 193nmLA-ICPMS对国际地质标准参考物质中42种主量和微量元素的分析[J]. 岩石学报, 2002, 18(03): 408-418 doi: 10.3969/j.issn.1000-0569.2002.03.017

    LIU Xiaoming, GAO Shan, YUAN Honglin, et al. Analysis of 42 major and trace elements in glass standard reference materials by 193nm LA-ICPMS[J]. Acta Petrologica Sinica, 2002, 18(03): 408-418. doi: 10.3969/j.issn.1000-0569.2002.03.017

    [10]

    刘明强. 甘肃西秦岭舟曲憨班花岗岩体的单颗粒锆石U-Pb年龄及地质意义[J]. 地质科学, 2012, 47(03): 899-907 doi: 10.3969/j.issn.0563-5020.2012.03.023

    LIU Mingqiang. Single-grain zircon U-Pb ages and geological significance of the Hanban granite from Zhouqu(Gansu)in[J]. Earth Science, 2012, 47(03): 899-907. doi: 10.3969/j.issn.0563-5020.2012.03.023

    [11]

    穆可斌, 裴先治, 李瑞保, 等. 南秦岭白龙江群中花岗岩脉群年代学、地球化学特征及地质意义[J]. 西北地质, 2019, 52(03): 111-135 doi: 10.19751/j.cnki.61-1149/p.2019.03.010

    MU Kebin, PEI Xianzhi, LI Ruibao, et al. Geochronology, geochemistry and geological significance of the granite veins in the Bailongjiang Group, South Qinling[J]. Northwestern Geology, 2019, 52(03): 111-135. doi: 10.19751/j.cnki.61-1149/p.2019.03.010

    [12]

    裴先治, 张国伟, 赖绍聪, 等. 西秦岭南缘勉略构造带主要地质特征[J]. 地质通报, 2002, 21(8-9): 486-494

    PEI Xianzhi, ZHANG Guowei, LAI Shaocong, et al. Main geological feature of the Mianlue tectonic belt on the southern maigin of the West Qinling[J]. Geological Bulletin of China, 2002, 21(8-9): 486-494

    [13]

    邱庆伦, 龚全胜, 卢书伟, 等. 甘肃夏河地区印支期埃达克岩的厘定及其意义[J]. 甘肃地质, 2008, 17(03): 6-12

    QIU Qinglun, GUN Quansheng, LU Shuwei, et al. Geochemical characteristics and geological significance of adakitic granitoids in Xiahe county of Gansu Province[J]. Gansu Geology, 2008, 17(03): 6-12.

    [14]

    王晓霞, 王涛, 张成立. 秦岭造山带花岗质岩浆作用与造山带演化[J]. 中国科学: 地球科学, 2015, 45(08): 1109-1125

    WANG Xiaoxia, WANG Tao, ZHANG Chengli. Granitic magmatism and orogenic belt evolution in Qinling Orogenic Belt[J]. Science China: Earth Sciences, 2015, 45(08): 1109-1125.

    [15]

    韦萍, 莫宣学, 喻学惠, 等. 西秦岭夏河花岗岩的地球化学、年代学及地质意义[J]. 岩石学报, 2013, 29(11): 3981-3992

    WEI Ping, MO Xuanxue, YU Xuehui et al. Geochemistry, chronology and geological significance of the granitoids in Xiahe, West Qinling[J]. Acta Petrologica Sinica, 2013, 29(11): 3981-3992.

    [16]

    肖庆辉, 邓晋福, 马大铨, 等. 花岗岩研究思维与方法[M]. 北京: 地质出版社, 2002, 1– 294.

    [17]

    徐多勋, 杨拴海, 李瑞保, 等. 西秦岭西段塔洞花岗闪长岩体年代学、地球化学特征及其地质意义[J]. 地球科学与环境学报, 2015, 37(03): 22-33 doi: 10.3969/j.issn.1672-6561.2015.03.005

    XU Duoxun, YANG Shuanhai, LI Ruibao, et al. Geochronological, geochemical characteristics and geological significance of Tadong granodiorite pluton in the west section of West Qinling[J]. Journal of Earth Sciences and Evironment, 2015, 37(03): 22-33. doi: 10.3969/j.issn.1672-6561.2015.03.005

    [18]

    徐学义, 陈隽璐, 高婷, 等. 西秦岭北缘花岗质岩浆作用及构造演化[J]. 岩石学报, 2014, 30(02): 371-389

    XU Xueyi, CHEN Juanlu, GAO Ting, et al. Granitoid magmatism and tectonic evolution in northern edge of the Western Qinling terrane, NW China[J]. Acta Petrologica Sinica, 2014, 30(02): 371-389.

    [19]

    张成立, 王涛, 王晓霞. 秦岭造山带早中生代花岗岩成因及其构造环境[J]. 高校地质学报, 2008, 14(03): 304-316 doi: 10.3969/j.issn.1006-7493.2008.03.003

    ZHANG Chenli, WANG Tao, WANG Xiaoxia, et al. Origin and tectonic setting of the Early Mesozoic granitoids in Qinling Orogenic Belt[J]. Geological Journal of China Universities, 2008, 14(03): 304-316. doi: 10.3969/j.issn.1006-7493.2008.03.003

    [20]

    张国伟, 董云鹏, 赖绍聪, 等. 秦岭-大别造山带南缘勉略构造带与勉略缝合带[J]. 中国科学(D辑: 地球科学), 2003, 33(12): 1121-1135

    ZHANG Guowei, DONG Yunpeng, LAI Shaocun, et al. Mianlue Orogenic and Suture in the southern margin of Qinling-Dabie Orogenic Belt[J]. Science in China(Series D), 2003, 33(12): 1121-1135.

    [21]

    张国伟, 张本仁, 袁学诚, 等. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 2001, 1–806

    [22]

    张国伟, 郭安林, 姚安平. 中国大陆构造中的西秦岭—松潘大陆构造结[J]. 地学前缘, 2004, 11(03): 23-32 doi: 10.3321/j.issn:1005-2321.2004.03.004

    ZHANG Guowei, GUO Anlin, YAO Anping. Western Qinling-Songpan continental tectonic node in China’s continental tectonics[J]. Earth Science Frontiers, 2004, 11(03): 23-32. doi: 10.3321/j.issn:1005-2321.2004.03.004

    [23]

    张宏飞, 靳兰兰, 张利, 等. 西秦岭花岗岩类地球化学和Pb-Sr-Nd同位素组成对基底性质及其构造属性的限制[J]. 中国科学(D辑: 地球科学), 2005, (10): 10-22

    ZHANG Hongfei, JIN Lanlan, ZHANG Li et al. Geochemistry of granitoids and limitation of Pb-Sr-Nd isotope composition on basement properties and tectonic properties in the Western Qinling Mountains[J]. Science in China(Series D), 2005, (10): 10-22.

    [24]

    张旗, 王焰, 李承东, 等. 花岗岩的Sr-Yb分类及其地质意义[J]. 岩石学报, 2006, 22(09): 2249-2269 doi: 10.3321/j.issn:1000-0569.2006.09.001

    ZHANG Qi, WANG Yan, LI Chengdong, et al. Granite classification on the basis of Sr and Yb contents and its implications[J]. Acta Petrologica Sinica, 2006, 22(09): 2249-2269. doi: 10.3321/j.issn:1000-0569.2006.09.001

    [25]

    张旗, 殷先明, 殷勇, 等. 西秦岭与埃达克岩和喜马拉雅型花岗岩有关的金铜成矿及找矿问题[J]. 岩石学报, 2009, 25(12): 3103-3122

    ZHANG Qi, YIN Xianming, YIN Yong, et al. Issues on metallogenesis and prospecting of gold and copper deposits related to adakite and Himalayan type granite in west Qinling[J]. Acta Petrologica Sinica, 2009, 25(12): 3103-3122.

    [26]

    张旗, 李承东. 花岗岩: 地球动力学意义[M]. 北京: 海洋出版社, 2012, 1–268.

    [27]

    郑永飞, 龚冰, 赵子福, 等. 大别-苏鲁造山带超高压变质岩原岩性质: 锆石氧同位素和U-Pb年龄证据[J]. 科学通报, 2003, 48(2): 110-119

    ZHENG Yongfei, GONG Bing, ZHAO Zifu,et al. Protolith properties of ultrahigh pressure metamorphic rocks in the Dabie-Sulu orogenic belt: evidence from zircon oxygen isotopes and U-Pb age[J]. Chinese Science Bulletin, 2003, 48(2): 110-119.

    [28]

    Andersen T. Correction of common lead in U–Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X

    [29]

    Beard J S, Lofgern G E. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6. 9 kb[J]. Journal of Petrology, 1991, 32(2): 365-401. doi: 10.1093/petrology/32.2.365

    [30]

    Cao Xiaofeng, LvXinbiao, Yao Shuzhen, et al. LA–ICP–MS U–Pb zircon geochronology, geochemistry and kinetics of the Wenquan ore-bearing granites from West Qinling, China[J]. Ore Geology Reviews, 2011, 43(1): 120-131. doi: 10.1016/j.oregeorev.2010.03.004

    [31]

    Chappell B W, White A J R. I-and S-type granites in the Lachlan Fold Belt[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1992, 83(1-2): 1-26. doi: 10.1017/S0263593300007720

    [32]

    David K, Schiano P, Alleger C J. Assessment of the Zr/Hf fractionation in oceanic basalts and continental materials during petrogenetic processes[J]. Earth and Planetary Science Letters, 2000, 178(3-4): 285-301. doi: 10.1016/S0012-821X(00)00088-1

    [33]

    Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347(6294): 662-665. doi: 10.1038/347662a0

    [34]

    Dong Yunpeng, Zhang Guowei, Neubaue R F, et al. Tectonic evolution of the Qinling orogen, China: Review and synthesis[J]. Journal of Asian Earth Science, 2011, 41(3): 213-237. doi: 10.1016/j.jseaes.2011.03.002

    [35]

    Dong Yunpeng, Santosh M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 2016, 29(1): 1-40. doi: 10.1016/j.gr.2015.06.009

    [36]

    Dong Yunoeng, SUN Shengsi, Santosh M, et al. Central China orogenic belt and amalgamation of East Asian continents[J]. Gondwana Research, 2021, 100: 131-194. doi: 10.1016/j.gr.2021.03.006

    [37]

    DONG Yunpeng, ZHANG Xiaoning, LIU Xiaomin, et al. Propagation tectonics and multiple accretionary processes of the Qinling Orogen[J]. Journal of Asian Earth Sciences, 2015, 104: 84-98.

    [38]

    Douce A E P, Mccarthy T C. Melting of crustal rocks during continental collision and subduction. Hacher B R, Liu J G. When continents collide: geodynamics and geochemistry of ultrahigh-pressure rocks [M]. Springer, Dordrecht, 1998: 27-55.

    [39]

    Jiang Yaohui, Jin Guodong, Liao Shiyong, et al. Geochemical and Sr–Nd–Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China: implications for a continental arc to continent–continent collision[J]. Lithos, 2010, 117(1-4): 183-197. doi: 10.1016/j.lithos.2010.02.014

    [40]

    Johannes W, Holtz F. Petrogenesis and experimental petrology of granitic rocks[M]. Springer, Science & Business Media, 2012.

    [41]

    Jochum K P, Pfander J, Snow J E, et al. Nb/Ta in mantle and crust[J]. Eos Transactions American Geophysical Union, 1997, 78, 804.

    [42]

    Kroner A, Zhang Guowei, Sun Y. Granulites in the Tongbai area, Qinling belt, China: geochemistry, petrology, single zircon geochronology, and implications for the tectonic evolution of eastern Asia[J]. Tectonics, 1993, 12(1): 245-255. doi: 10.1029/92TC01788

    [43]

    Li Nuo, Chen Yanjing, Santosh M, et al. Compositional polarity of Triassic granitoids in the Qinling Orogen, China: implication for termination of the northernmost paleo-Tethys[J]. Gondwana Research, 2015, 27(1): 244-257. doi: 10.1016/j.gr.2013.09.017

    [44]

    Li Xiaowei, Mo Xuanxue, Huang Xiongfei, et al. U–Pb zircon geochronology, geochemical and Sr–Nd–Hf isotopic compositions of the Early Indosinian Tongren Pluton in West Qinling: Petrogenesis and geodynamic implications[J]. Journal of Asian Earth Sciences, 2015, 97: 38-50. doi: 10.1016/j.jseaes.2014.10.017

    [45]

    Luo Biji, Zhang Hongfei, Xu Wangchun, et al. The Middle Triassic Meiwu Batholith, West Qinling, Central China: implications for the evolution of compositional diversity in a composite Batholith[J]. Journal of Petrology, 2015, 56(6): 1139-1172. doi: 10.1093/petrology/egv032

    [46]

    Mattauer M, Matte P, Malavieille J, et al. Tectonics of the Qinling belt: build-up and evolution of eastern Asia[J]. Nature, 1985, 317(6037): 496-500. doi: 10.1038/317496a0

    [47]

    Meng Qingren, Zhang Guowei. Timing of collision of the North and South China blocks: controversy and reconciliation[J]. Geology, 1999, 27(2): 123-126. doi: 10.1130/0091-7613(1999)027<0123:TOCOTN>2.3.CO;2

    [48]

    Niu Yaoling, O'hara M J. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4).

    [49]

    Patino D A E, Harris N. Experimental constraints on Himalayan anatexis[J]. Journal of Petrology, 1998, 39(4): 689-710. doi: 10.1093/petroj/39.4.689

    [50]

    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    [51]

    Pfander J A, Munker C, Stracke A, et al. Nb/Ta and Zr/Hf in ocean island basalts—implications for crust–mantle differentiation and the fate of Niobium[J]. Earth and Planetary Science Letters, 2007, 254(1-2): 158-172. doi: 10.1016/j.jpgl.2006.11.027

    [52]

    Qin Jiangfeng, Lai Shaocong, Grapes R, et al. Geochemical evidence for origin of magma mixing for the Triassic monzonitic granite and its enclaves at Mishuling in the Qinling orogen (central China)[J]. Lithos, 2009, 112(3-4): 259-276. doi: 10.1016/j.lithos.2009.03.007

    [53]

    Qin Jiangfeng, Lai Shaocong, Grapes R, et al. Origin of LateTriassic high-Mg adakitic granitoid rocks from the Dongjiangkou area, Qinling orogen, central China: Implications for subduction of continental crust[J]. Lithos, 2010, 120(3-4): 347-367. doi: 10.1016/j.lithos.2010.08.022

    [54]

    Rudnick R L, Gao Shan, Holland H D, et al. Composition of the continental crust[J]. The crust, 2003, 3: 1-64.

    [55]

    Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa[J]. Chemical Geology, 1999, 160(4): 335-356. doi: 10.1016/S0009-2541(99)00106-0

    [56]

    Sisson T W, Ratajeski K, Hankins W B, et al. Voluminous granitic magmas from common basaltic sources[J]. Contributions to Mineralogy and Petrology, 2005, 148(6): 635-661. doi: 10.1007/s00410-004-0632-9

    [57]

    SUN S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [58]

    Sun Weidong, Li Shuguang, Chen Yadong, et al. Timing of synorogenic granitoids in the South Qinling, central China: Constraints on the evolution of the Qinling-Dabie orogenic belt[J]. The Journal of Geology, 2002, 110(4): 457-468. doi: 10.1086/340632

    [59]

    Wang Xiaoxia, Wang Tao, Zhang Chengli. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process[J]. Journal of Asian Earth Sciences, 2013, 72: 129-151. doi: 10.1016/j.jseaes.2012.11.037

    [60]

    Wu Yuanbao, Zheng Yongfei. Tectonic evolution of a composite collision orogen: an overview on the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt in central China[J]. Gondwana Research, 2013, 23(4): 1402-1428. doi: 10.1016/j.gr.2012.09.007

    [61]

    Xiong Xiaolin, Adam J, Green T H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis[J]. Chemical Geology, 2005, 218(3-4): 339-359. doi: 10.1016/j.chemgeo.2005.01.014

    [62]

    Xiong Xiaolin, Zhu Laiming, Zhang Guowei, et al. Geology and geochemistry of the Triassic Wenquan Mo deposit and Mo-mineralized granite in the Western Qinling Orogen, China[J]. Gondwana Research, 2016, 30: 159-178. doi: 10.1016/j.gr.2015.09.013

    [63]

    Yin Q, Jagote, Kroner A. Precambrian(?)blue-schist-bearing ecologite belt in central China[J]. Terra Abstract, 1991, 3: 85-86.

    [64]

    Yuan Honglin, Gao Shan, Liu Xiaoming, et al. Accurate U‐Pb age and trace element determinations of zircon by laser ablation‐inductively coupled plasma‐mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x

    [65]

    Zhang Hongfei, Jin Lanlan, Zhang Li, et al. Geochemical and Pb-Sr-Nd isotopic compositions of granitoids from western Qinling belt: Constraints on basement nature and tectonic affinity[J]. Science in China Series D: Earth Sciences, 2007, 50(2): 184-196. doi: 10.1007/s11430-007-2015-3

    [66]

    Zhu Laiming, Zhang Guowei, Chen Yanjing, et al. Zircon U-Pb ages and geochemistry of the Wenquan Mo-bearing granitioids in West Qinling, China: Constraints on the geodynamic setting for the newly discovered Wenquan Mo deposit[J]. Ore Geology Reviews, 2011, 39(1-2): 46-62. doi: 10.1016/j.oregeorev.2010.10.001

    [67]

    Zhu Laiming, Zhang Guowei, Yang Tao, et al. Geochronology, petrogenesis and tectonic implications of the Zhongchuan granitic pluton in the Western Qinling metallogenic belt, China[J]. Geological Journal, 2013, 48(4): 310-334. doi: 10.1002/gj.2444

  • 加载中

(10)

(2)

计量
  • 文章访问数:  489
  • PDF下载数:  1
  • 施引文献:  0
出版历程
收稿日期:  2022-12-10
修回日期:  2023-09-21
刊出日期:  2024-10-20

目录