Formation Age, Petrogenesis and Geological Significance of Late Jurassic Granodiorites in Kayico Area, Northern Tibet
-
摘要:
南羌塘地块南缘在中—晚侏罗世爆发了大规模、多样性的岩浆作用,是认识班公湖–怒江缝合带构造演化过程的理想研究对象。笔者对卡易错地区出露的花岗闪长岩进行了锆石U-Pb定年、全岩地球化学以及锆石Lu-Hf同位素测试分析和研究工作。测年结果表明,卡易错花岗闪长岩形成于158 Ma,与区域上中—晚侏罗世岩浆活动时代相一致,其地球化学组成显示高SiO2和全碱含量(Na2O+K2O)、低MgO和TiO2的含量,并显示Eu、Sr、Ba的负异常,具有钙碱性I型花岗岩的特征。结合区域现有研究资料,研究认为卡易错花岗闪长岩是古老变火成岩下地壳部分熔融、并经历结晶分异作用的产物,是班公湖–怒江特提斯洋洋壳北向俯冲在南羌塘地块南缘引发的弧型岩浆活动。结合区域研究资料,卡易错地区同时发育钙碱性I型和高分异型两类花岗岩,分别代表着熔体在浅层岩浆房内经历矿物结晶作用后不同端元冷凝的产物。
Abstract:The widely distributed Middle-Late Jurassic magmatic rocks in south margin of Southern Qiangtang block display complex geochemical compositions, providing an ideal research object for the tectonic evolution of Bangong-Nujiang Suture Zone. In this paper, zircon U-Pb dating, whole rock geochemistry and zircon Lu-Hf isotopes of Kayico granodiorites were analyzed. The investigated granodiorites yielded zircon ages of 158 Ma, coeval with the regional Middle-Late Jurassic magmatic rocks. Geochemically, the granodiorites were characterized by high SiO2 and total alkalis (Na2O+K2O) contents, but low MgO and TiO2 contents, with depletion in Eu、Sr、Ba, suggesting a geochemical affinity with calc alkaline I-type granites. Combined with the regional research data, it is thus concluded that these granodiorites were derived by partial melting of the ancient metaigneous lower crust, followed by vary degree of crystallization differentiation. Our research favor that the Middle-Late Jurassic magmatic rocks in Southern Qiangtang block were generated in an arc setting during the northward subduction of Bangong-Nujiang oceanic lithosphere. Furthermore, considering the preexisting geochemical data, the granitic rocks of Kayico area can be divided into two groups of calc-alkaline I-type granites and highly fractionated granites, which were derived by the different end-members of the crystal mush process within the shallow crust.
-
Key words:
- Tibetan Plateau /
- Late Jurassic /
- Bangong-Nujiang Suture Zone /
- petrogenesis /
- oceanic subduction
-
-
图 4 卡易错花岗岩TAS图解(Middlemost, 1994)(a)、K2O-SiO2图解(Le Maitre et al., 1989; Rickwood, 1989)(b)和A/NK-A/CNK图解(c)(Shand, 1943)
Figure 4.
图 5 岩石球粒陨石标准化稀土元素模式图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值引自Sun 等1989)
Figure 5.
图 6 卡易错花岗岩(Na2O/K2O)/CaO-Zr+Ce+Nb+Y图解(a)、FeOt/MgO-Zr+Ce+Nb+Y图解(b)(Whalen et al., 1987)、P2O5-SiO2图解(c)和Th-Rb图解(d)(Li et al., 2007)
Figure 6.
图 7 卡易错花岗岩CaO/Na2O-Al2O3/TiO2图解(a)、Rb/Ba-Rb/Sr图解(b)(Sylvester, 1998)、 Rb/Sr-Sr图解(c)、Ba-Sr图解(d)(Rollinson, 1993)
Figure 7.
表 1 卡易错花岗闪长岩LA-ICP-MS锆石U-Pb定年分析结果
Table 1. LA-ICP-MS U-Pb dating results for zircons of Kayico granodiorites
点号 同位素比值(1σ) 年龄比值(Ma) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 18T12-01 0.04954 0.00219 0.17017 0.00781 0.02491 0.00066 173 59 160 7 159 4 18T12-02 0.04929 0.00266 0.16824 0.00927 0.02475 0.00067 162 78 158 8 158 4 18T12-03 0.04965 0.00191 0.16944 0.00690 0.02475 0.00064 179 50 159 6 158 4 18T12-04 0.04989 0.00233 0.16974 0.00824 0.02467 0.00064 190 66 159 7 157 4 18T12-05 0.04939 0.00438 0.17064 0.01519 0.02505 0.00071 166 147 160 13 159 4 18T12-06 0.05092 0.00237 0.16985 0.00810 0.02419 0.00066 237 61 159 7 154 4 18T12-07 0.04885 0.00211 0.16623 0.00740 0.02467 0.00067 141 56 156 6 157 4 18T12-08 0.04955 0.00218 0.17037 0.00777 0.02493 0.00066 174 59 160 7 159 4 18T12-09 0.04888 0.00299 0.16655 0.01042 0.02471 0.00064 142 95 156 9 157 4 18T12-10 0.05012 0.00238 0.17289 0.00852 0.02501 0.00065 201 67 162 7 159 4 18T12-11 0.04908 0.00453 0.16867 0.01561 0.02492 0.00071 152 154 158 14 159 4 18T12-12 0.04889 0.00190 0.16671 0.00681 0.02472 0.00065 143 50 157 6 157 4 18T12-13 0.04940 0.00280 0.17026 0.00980 0.02499 0.00069 167 83 160 9 159 4 18T12-14 0.04970 0.00173 0.16964 0.00637 0.02475 0.00064 181 43 159 6 158 4 18T12-15 0.04905 0.00219 0.16888 0.00775 0.02496 0.00068 150 59 158 7 159 4 18T12-16 0.04950 0.00233 0.17051 0.00831 0.02498 0.00066 172 66 160 7 159 4 18T12-17 0.05017 0.00176 0.17246 0.00651 0.02492 0.00064 203 44 162 6 159 4 18T12-18 0.04892 0.00463 0.16803 0.01594 0.02490 0.00071 144 159 158 14 159 4 18T12-19 0.05000 0.00226 0.17212 0.00808 0.02496 0.00066 195 62 161 7 159 4 18T12-20 0.04862 0.00207 0.17018 0.00751 0.02538 0.00068 130 56 160 7 162 4 表 2 卡易错花岗闪长岩锆石Lu-Hf同位素组成
Table 2. Lu-Hf isotopes of zircons from the Kayico granodiorites.
点号 年龄 (Ma) 176Hf/177Hf 1σ 176Lu/177Hf 1σ 176Yb/177Hf 1σ εHf(0) 1σ εHf(t) 1σ TDM1 TDMC fLu/Hf 18T12-01 159 0.282608 0.000008 0.000562 0.000003 0.017391 0.000117 −5.81 0.59 −2.38 0.60 901 1207 −0.98 18T12-02 158 0.282602 0.000009 0.000996 0.000005 0.031211 0.000271 −6.03 0.61 −2.66 0.62 921 1222 −0.97 18T12-03 158 0.282609 0.000010 0.000842 0.000026 0.026596 0.000831 −5.77 0.61 −2.39 0.62 907 1207 −0.97 18T12-04 154 0.282618 0.000010 0.000867 0.000013 0.027469 0.000376 −5.46 0.62 −2.17 0.63 895 1191 −0.97 18T12-05 159 0.282641 0.000009 0.000427 0.000002 0.012865 0.000067 −4.65 0.61 −1.20 0.62 853 1142 −0.99 18T12-06 157 0.282643 0.000009 0.000608 0.000005 0.019402 0.000131 −4.57 0.60 −1.18 0.61 854 1139 −0.98 18T12-07 159 0.282631 0.000008 0.000532 0.000001 0.016431 0.000077 −4.98 0.59 −1.55 0.60 868 1161 −0.98 18T12-08 159 0.282669 0.000009 0.001145 0.000043 0.037412 0.001346 −3.64 0.60 −0.27 0.61 829 1090 −0.97 表 3 卡易错花岗闪长岩全岩主量(%)和微量(10−6)元素分析结果
Table 3. Whole-rock major (%) and trace (10−6) element contents of Kayico granodiorites
元素 T12h1 T12h2 T12h3 T12h4 元素 T12h1 T12h2 T12h3 T12h4 SiO2 63.6 65.2 64.5 62.6 Zr 248 230 244 245 TiO2 0.78 0.68 0.71 0.81 Nb 13.8 13.1 13.7 14.1 Al2O3 16.1 15.9 16.2 16.6 Sn 3.58 5.26 4.55 4.30 TFe2O3 5.37 4.53 4.82 5.12 Cs 17.5 21.1 14.6 20.0 MnO 0.08 0.06 0.07 0.07 Ba 457 383 401 428 MgO 2.34 2.06 2.07 2.33 La 29.8 32.7 32.1 30.2 CaO 4.48 4.44 4.38 4.83 Ce 66.7 68.5 63.0 61.6 Na2O 2.70 2.74 2.83 2.74 Pr 6.97 7.45 7.02 6.90 K2O 2.86 2.78 2.57 2.77 Nd 26.37 28.1 27.3 25.4 P2O5 0.15 0.13 0.14 0.15 Sm 5.26 5.68 5.75 5.24 LOI 0.99 1.11 1.30 1.30 Eu 1.11 1.05 1.14 1.16 SUM 99.5 99.7 99.5 99.3 Gd 5.08 4.65 4.55 4.66 Li 56.7 49.2 63.6 54.6 Tb 0.83 0.83 0.78 0.74 Be 1.97 2.31 2.18 2.07 Dy 4.95 5.01 4.54 4.49 Sc 14.9 12.7 13.8 14.8 Ho 1.00 1.01 0.91 0.92 V 74.0 61.3 67.1 74.1 Er 2.83 2.87 2.72 2.60 Cr 40.0 32.8 37.6 37.7 Tm 0.45 0.43 0.40 0.41 Co 15.4 11.5 12.9 12.8 Yb 2.70 2.78 2.46 2.42 Ni 16.6 14.3 15.2 15.5 Lu 0.41 0.44 0.37 0.37 Cu 104 45.7 44.1 45.7 Hf 6.64 6.24 6.79 6.29 Zn 56.6 43.1 45.7 51.6 Ta 1.02 1.10 1.05 0.98 Ga 19.2 18.8 19.1 19.5 Tl 1.33 1.40 1.13 1.34 Rb 170 185 169 178 Pb 8.40 9.57 7.76 10.2 Sr 188 181 194 203 Th 14.4 16.9 15.5 12.4 Y 28.2 28.0 26.8 24.8 U 2.18 2.88 2.52 2.23 -
[1] 董宇超, 李才, 王明, 等. 西藏改则县多不扎地区上侏罗统对望山组的建立及意义[J]. 地质通报, 2016, 35(8): 1263-1270 doi: 10.3969/j.issn.1671-2552.2016.08.007
DONG Yuchao, LI Cai, WANG Ming, et al. Establishment of Upper Jurassic Duiwangshan Formation in Duobuza area, Gerze County, Tibet, and its significance [J]. Geological Bulletin of China, 2016, 35(8): 1263-1270. doi: 10.3969/j.issn.1671-2552.2016.08.007
[2] 范建军, 张博川, 刘海永, 等. 班公湖-怒江洋早-中侏罗世洋内俯冲: 来自洞错蛇绿岩的证据[J]. 岩石学报, 2019, 35(10): 3048-3064 doi: 10.18654/1000-0569/2019.10.06
FAN Jianjun, ZHANG Bochuan, LIU Yonghai, et al. Early-Middle Jurassic intra-oceanic subduction of the Bangong-Nujiang oceanic lithosphere: Evidence of the Dong Co ophiolite [J]. Acta Petrologica Sinica, 2019, 35(10): 3048-3064. doi: 10.18654/1000-0569/2019.10.06
[3] 李小波, 王保弟, 刘函, 等. 西藏达如错地区晚侏罗世高镁安山岩——班公湖-怒江洋壳俯冲消减的证据[J]. 地质通报, 2015, 34(Z1): 251-261
LI Xiaobo, WANG Baodi, LIU Han, et al. The Late Jurassic high-Mg andesites in the Daru Tso area, Tibet: Evidence for the subduction of the Bangong Co-Nujiang River oceanic lithosphere [J]. Geological Bulletin of China, 2015, 34(Z1): 251-261.
[4] 李艳广, 靳梦琪, 汪双双, 等. 2023: LA–ICP–MS U–Pb定年技术相关问题探讨[J]. 西北地质, 2023, 56(4): 274–282.
LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology, 2023, 56(4): 274–282.
[5] 李永飞, 王娟. 羌塘地块南界班公湖-丁青断裂构造带火山岩地球化学及其形成构造环境[J]. 西北地质, 2005, 38(1): 15-25 doi: 10.3969/j.issn.1009-6248.2005.01.002
LI Yongfei, WANG Juan. Geochemistry of the volcanic rock association from Bangong lake-Dingqing suture zone of the south boundary in Qiangtang block and its tectonic setting [J]. Northwestern Geology, 2005, 38(1): 15-25. doi: 10.3969/j.issn.1009-6248.2005.01.002
[6] 李志军, 李晨伟, 高一鸣, 等. 西藏狮泉河蛇绿岩中侏罗世晚期(ca. 163Ma)OIB型辉绿岩及高镁闪长岩年代学及地球化学特征: 早期洋壳俯冲产物?[J]. 岩石学报, 2019, 35(03): 816-832 doi: 10.18654/1000-0569/2019.03.12
LI Zhijun, LI Chenwei, GAO Yiming, et al. Geochronology and geochemistry characteristics of the late Mid-Jurassic (ca. 163Ma) OIB-type diabase and high-Mg diorites in Shiquanhe ophiolite: Products of early stage oceanic crust subduction? [J]. Acta Petrologica Sinica, 2019, 35(03): 816-832. doi: 10.18654/1000-0569/2019.03.12
[7] 刘海永, 唐菊兴, 王雨, 等. 西藏安多纳茸矿区石英闪长玢岩成因及地质意义[J]. 地球科学, 2022, 47(03): 1059-1077
LIU Haiyong, TANG Juxing, WANG Yu, et al. Petrogenesis and Geological Significance of Quartz diorite porphyry in Narong mining area, Tibet [J]. Earth Science, 2022, 47(03): 1059-1077.
[8] 刘海永, 岳鋆璋, 顿珠旺堆, 等. 青藏高原中部麻米地区晚侏罗世火山岩岩石成因及其地质意义[J]. 地球科学, 2019, 44(7): 2368-2378
LIU Yonghai, YUE Yunzhang, DUNZHU Wangdui, et al. Petrogenesis and Geological Significance of Late Jurassic Volcanic Rocks in Mami Area, Central Tibetan Plateau [J]. Earth Science, 2019, 44(7): 2368-2378.
[9] 孙巍, 许逢明, 吴大天, 等. 大兴安岭中部扎赉特旗晚三叠世A型花岗岩的发现及其地质意义[J]. 西北地质, 2022, 56(2): 80-91. doi: 10.12401/j.nwg.2022027 .
SUN Wei, XU Fengming, WU Datian, et al. Discovery and Geological Significance of Late Triassic A–Type Granite in Jalaid Banner, Middle of Great Xing’an Range[J]. Northwestern Geology, 2022, 56(2): 80-91. doi: 10.12401/j.nwg.2022027.
[10] 唐跃, 翟庆国, 胡培远, 等. 班公湖-怒江缝合带西段拉果错蛇绿岩中斜长岩成因及其对中特提斯洋演化的制约[J]. 地质通报, 2021, 40(08): 1265-1278
TAN Yue, ZHAI Qingguo, HU Peiyuan, et al. Petrogenesis of anorthosite in the Laguoco ophiolite, western part of the BangongNujiang suture zone and its constraint to the evolution of the Meso-Tethys Ocean [J]. Geological Bulletin of China, 2021, 40(08): 1265-1278.
[11] 王亮, 王凯, 张翔, 等. 南祁连扎子沟埃达克岩年代学、地球化学特征及地质意义[J]. 西北地质, 2022, 55(1): 39-49 doi: 10.19751/j.cnki.61-1149/p.2022.01.003
WANG Liang, WANG Kai, ZHANG Xiang, et al. Geochronological and Geochemical Characteristics of the Zhazigou Adakite in South Qilian and the Geological Significance [J]. Northwestern Geology, 2022, 55(1): 39-49. doi: 10.19751/j.cnki.61-1149/p.2022.01.003
[12] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220 doi: 10.3969/j.issn.1000-0569.2007.02.001
WU Fuyuan, LI Xianhua, ZHENG Yongfei, et al. Lu-Hf isotopic systematics and their applications in petrology [J]. Acta Petrologica Sinica, 2007, 23(2): 185-220. doi: 10.3969/j.issn.1000-0569.2007.02.001
[13] 吴浩, 徐祖阳, 严维兵, 等. 西藏中部聂尔错地区辉绿岩锆石U-Pb年龄与地球化学特征: 对新特提斯洋板片断离的指示[J/OL]. 中国地质, 2020
WU Hao, XU Zuyang, YAN Weibing, et al. Zircon U-Pb ages and geochemical characteristics of diabase in Nie’erco area, central Tibet: Implication for Neo-Tethyan slab breakoff [J/OL]. China Geology, 2020.
[14] Bachmann O, Bergantz G W. On the origin of crystal-poor rhyolites: Extracted from batholithic crystal mushes [J]. Journal of Petrology, 2004, 45: 1565-1582. doi: 10.1093/petrology/egh019
[15] Chappell B W, White A J R. Two contrasting granite types [J]. Pacific Geology, 1974, 8: 173-174.
[16] Chappell B W, White A J R. I– and S– type granites in the Lachlan Fold Belt [J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 83: 1-26. doi: 10.1017/S0263593300007720
[17] Chappell B W, White A J R. Two contrasting granite types: 25 years later [J]. Australian Journal of Earth Sciences, 2001, 48(4): 489-499. doi: 10.1046/j.1440-0952.2001.00882.x
[18] Fan Jianjun, Li Cai, Wang Ming. Remnants of a Late Triassic ocean island in the Gufeng area, northern Tibet: Implications for the opening and early evolution of the Bangong–Nujiang Tethyan Ocean [J]. Journal of Asian Earth Sciences, 2017, 135: 35-50. doi: 10.1016/j.jseaes.2016.12.015
[19] Fan J J, Niu Y, Liu Y M, et al. Timing of closure of the Meso-Tethys Ocean: Constraints from remnants of a 141−135 Ma ocean island within the Bangong−Nujiang Suture Zone, Tibetan Plateau [J]. Geological Society of America Bulletin, 2021, 133(9–10): 1875-1889.
[20] Hildreth W. Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: Several contiguous but discrete systems [J]. Journal of Volcanology & Geothermal Research, 2004, 136: 169-198.
[21] Kapp P, Decelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet [J]. Geological Society of America Bulletin, 2007, 119(7-8): 917-933. doi: 10.1130/B26033.1
[22] Kapp P, Decelles P G. Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses [J]. American Journal of Science, 2019, 319(3): 159-254. doi: 10.2475/03.2019.01
[23] Le Maitre R W, Bateman P, Dudek A, et al. A classification of igneous rocks and a glossary of terms [M]. Oxford, Blackwell, 1989.
[24] Li X H, Li Z X, Li W X, et al. U–Pb zircon, geochemical and Sr–Nd–Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab? [J]. Lithos, 2007, 96(s1–2): 186-204.
[25] Li Shimin, Zhu Dicheng, Wang Qing, et al. Northward subduction of Bangong–Nujiang Tethys: Insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet [J]. Lithos, 2014, 205(9): 284-297.
[26] Li Shimin, Zhu Dicheng, Wang Qing, et al. Slab-derived adakites and subslab asthenosphere-derived OIB-type rocks at 156 ± 2 Ma from the north of Gerze, central Tibet: Records of the Bangong–Nujiang oceanic ridge subduction during the Late Jurassic [J]. Lithos, 2016, 262: 456-469. doi: 10.1016/j.lithos.2016.07.029
[27] Liu Y, Zhai Q, Hu P, et al. Subduction initiation of the Bangong–Nujiang Tethys Ocean, Tibetan Plateau [J]. Journal of Asian Earth Sciences, 2022, 238: 105394. doi: 10.1016/j.jseaes.2022.105394
[28] Liu Yongsheng, Hu Zhaochu, Gao Shan, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard [J]. Chemical Geology, 2008, 257: 34-43. doi: 10.1016/j.chemgeo.2008.08.004
[29] Liu Yongsheng, Gao, Shan, Hu Zhaochu, et al. Continental and oceanic crust recycling-induced melt–peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths [J]. Journal of Petrology, 2010, 51(1-2): 537-571. doi: 10.1093/petrology/egp082
[30] Liu Deliang, Huang Qishuai, Fan Shuaiquan, et al. Subduction of the Bangong–Nujiang Ocean: constraints from granites in the Bangong Co area, Tibet [J]. Geological Journal, 2014, 49: 188-206. doi: 10.1002/gj.2510
[31] Ludwig K R. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel [M]. Berkeley: Geochronology Center Special Publication, 2003.
[32] Middlemost E A K. Naming materials in the magma/igneous rock system [J]. Earth-Science Review, 1994, 74: 193-227.
[33] Pan Guitang, Wang Liquan, Li Rongshe, et al. Tectonic evolution of the Qinghai-Tibet Plateau [J]. Journal of Asian Earth Sciences, 2012, 53(2): 3-14.
[34] Petford N, Atherton M. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru [J]. Journal of Petrology, 1996, 37: 1491-1521. doi: 10.1093/petrology/37.6.1491
[35] Qian Q, Hermann J, Dong F, et al. Episodic formation of Neotethyan ophiolites (Tibetan plateau): Snapshots of abrupt global plate reorganizations during major episodes of supercontinent breakup? [J]. Earth-Science Reviews, 2020, 203: 103144. doi: 10.1016/j.earscirev.2020.103144
[36] Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements [J]. Lithos, 1989, 22(4): 247-263. doi: 10.1016/0024-4937(89)90028-5
[37] Rollinson H R. Using Geochemical Data: Evaluation, Presentation, Interpretation [M]. Longman Scientific Technical, London, 1993.
[38] Shand S J. Eruptive Rocks: Their Genesis, Composition, Classification, and Their Relation to Ore-deposits with a Chapter on Meteorite [M]. New York: John Wiley and Sons, 1943.
[39] Sun S S. McDonough W F. Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins [J]. Geological Society, London, Special Publications, 1989, 42: 528-548.
[40] Sun Peng, Dan Wei, Wang Qiang, et al. Zircon U–Pb geochronology and Sr–Nd–Hf–O isotope geochemistry of Late Jurassic granodiorites in the southern Qiangtang block [J]. Journal of Asian Earth Sciences, 2020, 192: 104235. doi: 10.1016/j.jseaes.2020.104235
[41] Sylvester P J. Post-collisional strongly peraluminous granites [J]. Lithos, 1998, 45(s1-4): 29-44.
[42] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis [J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202
[43] Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, et al. Highly fractionated granites: Recognition and research [J]. Science China Earth Sciences, 2017, 60(7): 1201-1219. doi: 10.1007/s11430-016-5139-1
[44] Wu Hao, Xie Chaoming, Li Cai, et al. Tectonic shortening and crustal thickening in subduction zones: Evidence from Middle–Late Jurassic magmatism in Southern Qiangtang, China [J]. Gondwana Research, 2016, 39: 1-13. doi: 10.1016/j.gr.2016.06.009
[45] Wu Hao, Li Cai, Yu Yunpeng, et al. Age, origin, and geodynamic significance of high-Al plagiogranites in the Labuco area of central Tibet [J]. Lithosphere, 2018, 10(2): 351-363. doi: 10.1130/L711.1
[46] Wu Hao, Chen Jingwen, Wang Qiang, et al. Spatial and temporal variations in the geochemistry of Cretaceous high-Sr/Y rocks in central Tibet [J]. American Journal of Science, 2019a, 319(2): 105-121.
[47] Wu Hao, Sun Shulin, Liu Haiyong, et al. An Early Cretaceous slab window beneath central Tibet, SW China: evidence from OIB-like alkaline gabbro in the Duolong area [J]. Terra Nova, 2019b, 31(1): 67-75.
[48] Yang Zongyong, Wang Qiang, Hao Lulu, et al. Subduction erosion and crustal material recycling indicated by adakites in central Tibet [J]. Geology, 2021, 49(6): 708-712. doi: 10.1130/G48486.1
[49] Zhu Dicheng, Li Shilin, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction [J]. Lithos, 2016, 245: 7-17. doi: 10.1016/j.lithos.2015.06.023
[50] Zhu Dicheng, Zhao Zhidan, Niu Yaoling, et al. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth [J]. Earth & Planetary Science Letters, 2011, 301(1): 241-255.
[51] Zong Keqing, Klemd R, Yuan Y, et al. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB) [J]. Precambrian Research, 2017, 290: 32-48. doi: 10.1016/j.precamres.2016.12.010
-