卫宁北山库井沟石墨矿床地质地球化学特征及成因

李海峰, 姜喜冬, 于海滨, 海连富, 刘向东. 2024. 卫宁北山库井沟石墨矿床地质地球化学特征及成因. 西北地质, 57(5): 181-191. doi: 10.12401/j.nwg.2023025
引用本文: 李海峰, 姜喜冬, 于海滨, 海连富, 刘向东. 2024. 卫宁北山库井沟石墨矿床地质地球化学特征及成因. 西北地质, 57(5): 181-191. doi: 10.12401/j.nwg.2023025
LI Haifeng, JIANG Xidong, YU Haibin, HAI Lianfu, LIU Xiangdong. 2024. Geochemical Characteristics and Genesis of the Kujinggou Graphite Deposit in Weining Beishan, Ningxia. Northwestern Geology, 57(5): 181-191. doi: 10.12401/j.nwg.2023025
Citation: LI Haifeng, JIANG Xidong, YU Haibin, HAI Lianfu, LIU Xiangdong. 2024. Geochemical Characteristics and Genesis of the Kujinggou Graphite Deposit in Weining Beishan, Ningxia. Northwestern Geology, 57(5): 181-191. doi: 10.12401/j.nwg.2023025

卫宁北山库井沟石墨矿床地质地球化学特征及成因

  • 基金项目: 宁夏自然科学基金项目“宁夏中卫市单梁山石墨矿成矿特征及找矿方向研究”(2020AAC03456)资助。
详细信息
    作者简介: 李海峰(1969−),男,正高级工程师,长期从事基础地质及矿产地质调查研究。E−mail:903041579@qq.com
  • 中图分类号: P619.25+2

Geochemical Characteristics and Genesis of the Kujinggou Graphite Deposit in Weining Beishan, Ningxia

  • 库井沟石墨矿床位于宁夏卫宁北山–内蒙古阿拉善左旗南部地区,矿体赋存于下石炭统臭牛沟组区域变质岩中,原岩为滨浅海相陆源碎屑岩和碳酸盐岩沉积建造。矿体产状与地层产状近于一致,呈平行层状分布于变质石英砂岩中,走向近东西。矿石主要为含石墨碳质板岩,固定碳含量平均为5.53%。石墨主要呈不规则鳞片状单晶或呈块状聚晶集合体产出,多数大于1 μm。石墨矿石整体表现为低Si、低碱、高烧矢量的特点,大离子亲石元素Rb、Ba、Sr富集石墨矿石∑REE为101×10−6~137×10−6,平均为117×10−6,围岩的∑REE为42×10−6。石墨矿石和围岩的稀土元素分异程度较高,轻稀土元素明显富集,并都具有δEu和δCe负异常。石墨矿石的C同位素值变化很小,集中在−24.3‰~−24.0‰,表明库井沟矿床中碳质来源主要为有机物,并掺杂部分无机碳。库井沟石墨矿床属于区域变质型,滨浅海相–泻湖相沉积建造是其形成的物质基础,石墨的形成与区域变质变形作用密切相关。

  • 加载中
  • 图 1  研究区大地构造位置图(a)(霍福臣等,1989郭佩等,2017)及区域地质略图(b)(据中卫幅1∶20万区域地质图)

    Figure 1. 

    图 2  库井沟石墨矿床矿区地质略图(据张春林等,2017

    Figure 2. 

    图 3  库井沟石墨矿床A-A′纵剖面图(据张春林等,2017

    Figure 3. 

    图 4  库井沟石墨矿床矿石特征

    Figure 4. 

    图 5  库井沟石墨矿石与围岩微量元素蛛网图

    Figure 5. 

    图 6  库井沟石墨矿石与围岩稀土元素配分模式

    Figure 6. 

    图 7  石墨矿石La/Yb-∑REE图解(底图据Allegre et al., 1978

    Figure 7. 

    图 8  石墨矿石Ba-Sr图解(底图据王仁民等,1986)

    Figure 8. 

    图 9  库井沟与不同地区石墨矿床及含碳物质的C同位素值特征对比(数据引自刘敬党等,2017

    Figure 9. 

    表 1  库井沟矿区晶质石墨矿矿体特征一览表

    Table 1.  Characteristics of orebodies in the Kujinggou graphite deposit

    矿体
    编号
    矿石
    类型
    赋矿标
    高(m)
    埋藏深
    度(m)
    规模(m)厚度厚度变化
    系数(%)
    矿体
    形态
    产状(°)C 品位(%)品位变化
    系数(%)
    长度斜深最小-
    最大平均
    倾向倾角最小-
    最大平均
    晶质
    (鳞片)
    状石墨
    12551340442103110~7212.19~53.0119.7368.23似层状00~143.04~8.974.8752.88
    120113251022200136~10802.00~123.2037.7862.05似层状00~203.03~7.524.3448.49
    11801248159400150~3222.00~50.4825.2366.21透镜状02~144.11~7.525.5061.35
    1270132056400100~35843.92~85.1757.8424.49透镜状04~103.86~5.244.5450.31
    下载: 导出CSV

    表 2  库井沟石墨矿床矿石主量元素测试结果(%)

    Table 2.  Major element compositions of ore in Kujinggou graphite deposit (%)

    样品号 位置(m)SiO2CaOMgOAl2O3TFe2O3K2ONa2OP2O5TiO2V2O5固定碳
    ZK704-DH133.6055.090.431.5219.636.833.490.860.2560.430.0182.57
    ZK806-DH227.9053.420.441.8320.057.082.841.090.2140.390.0182.27
    ZK808-DH1136.4051.250.611.8317.857.622.893.260.2980.390.0192.39
    ZK2302-DH263.5053.070.421.5918.617.012.912.750.3350.450.0172.41
    ZK1506-DH1162.9055.730.391.4820.607.503.041.500.1970.350.0212.25
    ZK1508-DH1109.7755.170.361.6320.155.763.280.890.1770.490.0202.56
    ZK008-DH1114.0055.820.651.8219.556.732.990.990.2100.400.0172.48
    ZK1504-DH1127.4054.280.331.5420.206.772.861.140.2700.330.0172.58
    ZK706-DH168.5055.610.291.3020.555.043.680.930.2130.520.0172.51
    ZK2001-DH1106.7754.340.391.8020.197.073.031.090.2420.360.0192.57
    ZK2306-DH186.2054.000.811.6417.617.522.602.740.2400.410.0172.22
    ZK1104-DH170.6070.981.991.3210.763.991.870.480.0720.440.0130.51
    ZK1105-DH183.1055.941.382.3019.976.992.811.250.1780.720.0301.82
    XL XT DH-136.0050.431.601.2714.402.292.740.880.310.580.1910.72
    XL XT DH-255.7063.330.330.3310.661.741.740.320.370.420.1210.65
    XL XT DH-349.1053.420.880.578.567.371.631.590.250.400.0811.52
    XL XT DH-438.0044.220.170.4919.824.973.361.090.130.730.0494.81
    XL XT DH-553.1045.710.240.519.1812.712.690.840.080.290.1112.06
    下载: 导出CSV

    表 3  库井沟石墨矿床含矿岩石微量元素分析结果(10−6

    Table 3.  Trace elements compositions of graphite ore of the Kujinggou graphite deposit (10−6)

    元素 ZK305-1ZK305-2ZK1104-1ZK1104-2ZK1104-3ZK1104-4ZK1105-1ZK1105-2ZK1105-3ZK307-1ZK307-2ZK306-1ZK306-2
    Rb184.573.8110.0204.3154.8168.1153.794.5127.2113.8159.5162.0110.8
    Sr146.172.987.7432.3264.2221.9580.1206.487.486.8136.5121.087.5
    Ba682.1264.4399.9740.7608.2615.6546342.4489.7430.1628.4671.3441.6
    Nb20.2/17.420.821.922.820.8/17.216.420.920.415.6
    Zr179.3165.6208.5198.8238.6238225.8202.5274.6274.1226.4233.6200.5
    V72.221.332.388.077.486.195.744.932.631.576.086.036.0
    Cr81.933.759.584.082.792.998.350.951.950.882.381.745.2
    Co18.39.714.98.712.211.41716.711.11221.117.713.9
    Ni40.818.222.610.534.91742.325.917.919.640.739.521.8
    Y37.216.521.336.135.734.234.617.92019.229.332.717.7
    La63/50.484.876.965.666.7/54.450.863.663.9/
    P780.3528.9786841.91407.6706.11111.3711549.3467.8860800.7542.8
    Ti4910278041005640562057105380380043204280523053203660
    Rb/Sr1.261.011.250.470.590.760.260.461.461.311.171.341.27
    Sr/Ba0.210.280.220.580.430.361.060.600.180.200.220.180.20
    Ni/Co2.231.881.521.212.861.492.491.551.611.631.932.231.57
    V/Cr1.131.581.840.951.071.081.031.131.591.611.080.951.26
    下载: 导出CSV

    表 4  库井沟石墨矿床含矿岩石系稀土元素分析结果(10−6

    Table 4.  Rare earth elements compositions of graphite ore of the Kujinggou graphite deposit (10−6

    样品号 LaCePrNdSmCdEuTbDyHoErTmYbLuY
    XL XT DH-130.532.59.6930.26.075.501.561.073.631.002.390.472.470.5418.2
    XL XT DH-232.213.18.9427.3264.25.621.391.002.700.591.340.261.260.2810.5
    XL XT DH-331.531.810.635.121.96.411.641.234.451.212.820.552.520.5524.2
    XL XT DH-411.110.23.089.27238.61.380.390.301.360.431.110.241.170.268.15
    XL XT DH-515.316.78.6826.21.073.681.050.772.900.791.810.351.570.3415.3
    下载: 导出CSV

    表 5  库井沟石墨矿床矿石碳同位素组成测试结果

    Table 5.  Carbon isotope compositions of graphite ores in the Kujinggou deposit

    序号样品岩性δ13C(‰)
    1含石墨碳质板岩−24.0
    2含石墨碳质板岩−24.3
    3含石墨碳质板岩−24.3
    4含石墨碳质板岩−24.3
    5含石墨碳质板岩−24.2
    下载: 导出CSV
  • [1]

    艾宁, 任战利, 李文厚, 等. 宁夏卫宁北山地区矿床类型及成矿时代[J]. 矿床地质, 2011, 30(05): 941-948

    Ai Ning, REN Zhanli, LI Wenhou, et al. Metallogenic epoch and ore-forming types of ore deposits in Weiningbeishan area, Ningxia [J]. Mineral Deposits, 2011, 30(05): 941-948.

    [2]

    陈衍景, 刘丛强, 陈华勇, 等. 中国北方石墨矿床及赋矿孔达岩系碳同位素特征及有关问题讨论[J]. 岩石学报, 2000, 16(2): 233-244

    CHEN Yanjing, LIU Congqiang, CHEN Huayong, et al. Carbon isotope geochemistry of graphite deposits and ore-bearing khondalite series in North China: implications for several geoscientific problems [J]. Acta Petrologica Sinica, 2000, 16(2): 233-244.

    [3]

    陈正国, 颜玲亚, 高树学. 战略性非金属矿产资源形势分析[J]. 中国非金属矿工业导刊, 2021, 2: 1–8, 23 doi: 10.3969/j.issn.1007-9386.2021.02.001

    CHEN Zhengguo, YAN Yalin, GAO Shuxue. Analysis on the situation of strategic non-metallic mineral resources [J]. China Non-metallic Minerals Industry, 2021, 2: 1–8, 23. doi: 10.3969/j.issn.1007-9386.2021.02.001

    [4]

    程仕俊, 亢威, 周勇, 等, . 四川南江柏林坪石墨矿床成因: 岩石及 C-O 同位素地球化学约束[J]. 桂林理工大学学报, 2021, 41(4): 1-10

    CHENG Shijun, KANG Wei, ZHOU Yong, et al. Genesis of the Bolingping graphite deposit in Nanjiangm Sichuan: constraints of lithological and C-O isotopic geochemistry [J]. Journal of Guilin University of Technology, 2021, 41(4): 1-10.

    [5]

    段威,唐文春,黄健华,等 .四川旺苍大河坝晶质石墨矿地质特征及成因[J].矿产与地质,2020,34(06):15-27.

    DUAN Wei, TANG Wenchun, HUANG Jianhua, et al. Geological characteristics and genesis of Dahaba crystalline graphite deposit in Wangcang, Sichuan [J]. Mineral Resources and Geology, 2020, 34(6): 15-27.

    [6]

    郭佩, 刘池洋, 韩鹏, 等. 鄂尔多斯盆地西南缘下—中侏罗统碎屑锆石 U-Pb 年代学及其地质意义[J]. 大地构造与成矿学, 2017, 41(5): 892–907

    GUO Pei, LIU Chiyang, HAN Peng, et al. Geochemistry of detrital zircon form the lower-middle Jurassic strata in the southwestern Ordos basin, China, and its geological significance [J]. Geotectonica et Metallogenia, 2017, 41(5): 892–907.

    [7]

    海连富, 刘安璐, 陶瑞, 等. 宁夏卫宁北山金场子金矿床流体来源及矿床成因: 来自流体包裹体和C-H-O同位素证据[J]. 地球科学, 2021, 46(12): 4274-4290

    HAI Lianfu, LIU Anlu, TAO Rui, et al. Source of fluid and genesis of Jinchangzi gold deposit in Weiningbeishan Ningxia: Evidence from fluid inclusions and C-H-O isotopes [J]. Earth Science, 2021, 46(12): 4274-4290.

    [8]

    霍福臣, 潘行适, 尤国林, 等. 宁夏地质概论[M]. 北京: 科学出版社, 1989

    HUO Fuchen, PAN Xingshi, YOU Guolin, et al. Introduction to geology of Ningxia [M]. Beijing: Geological Publishing House, 1989.

    [9]

    李红霞, 白生明, 黄玮, 等, . 浅析宁夏卫宁北山地区石炭纪地层沉积特征及演化规律[J]. 宁夏工程技术, 2016, 15(3): 217-222

    LI Hongxia, BAI Shengming, HUANG Wei, et al. A brief analysis on sedimentary features and evolvement rules of Carboniferous strata in Weining North Mountain area of Ningxia [J]. Ningxia Engineering Technology, 2016, 15(3): 217-222.

    [10]

    梁利东, 黄瑞. 可控源音频大地电磁测深在卫宁北山石墨调查中的应用 [J]. 中国非金属矿工业导刊, 2020, 2: 49-53.

    [11]

    刘敬党, 肖荣阁, 张艳飞, 等. 华北显晶质石墨矿床[M]. 北京: 科学出版社, 2017.

    [12]

    刘勇, 李延栋, 王彦斌, 等. 宁夏卫宁北山金场子闪长玢岩岩脉地质特征及SHRIMP锆石U-Pb年龄[J]. 中国地质, 2010, 37(6): 1575-1583

    LIU Yong, LI Tingdong, WANG Yanbin, et al. Geological characteristics and zircon SHRIMP U-Pb data of Jinchangzi dioritic porphyrite dykes in Zhongwei city, Ningxia [J]. Geology in China, 2010, 37(6): 1575-1583.

    [13]

    彭素霞, 陈向阳, 陈隽璐, 等. 新疆东准噶尔地区石墨矿成矿特征及成因探讨[J]. 西北地质, 2018, 51(4): 194-201

    PENG Suxia, CHEN Xiangyang, CHEN Junlu, et al. Metallogenic Geological Characteristics and Genesis of the Graphite Ore Belt in East Junggar, Xinjiang[J]. Northwestern Geology, 2018, 51(4): 194-201.

    [14]

    王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6): 1189-1209

    WANG Denghong. Study on critical mineral resources: significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation [J]. Acta Geologica Sinica, 2019, 93(6): 1189-1209.

    [15]

    王仁民, 贺高品, 陈珍珍, 等. 变质岩原岩图解判别法 [M]. 北京: 地质出版社,1986, 4-7+163-165.

    [16]

    颜玲亚, 高树学, 陈正国, 等. 中国石墨矿成矿特征及成矿区带划分[J]. 中国地质, 2018, 45(3): 421-440

    YAN Lingya, GAO Shuxue, CHEN Zhengguo, et al. Metallogenic characteristics and metallogenic zoning of graphite deposits in China [J]. Geology in China, 2018, 45(3): 421-440.

    [17]

    杨季华, 罗重光, 杜胜江, 等. 高黏土含量沉积岩古环境指标适用性讨论. 矿物学报, 2020, 40(6): 723-733

    YANG Jihua, LUO Chongguang, DU Shengjiang, et al. Discussion on the applicability of paleoenvironment index for sedimentary rocks with high clay eontet. Acta Mineralogica Sinica, 2020, 40(6): 723-733.

    [18]

    张春林,白帅龙,袁建江,等.内蒙古自治区阿拉善左旗库井沟矿区晶质石墨矿勘探报告[R].北京:中国煤炭地质总局勘查研究总院.2017.

    ZHANG Chunling,BAI Shuailong,YUAN Jianjiang,et al. Exploration Report on Crystalline Graphite Ore in Kujinggou Mining Area, Alxa Left Banner, Inner Mongolia Autonomous Region[R].Beijing:General Prospecting Institute of China National Administration of Coal Geology.2017.

    [19]

    张艳飞, 安政臻, 梁帅, 等. 石墨矿床分布特征、成因类型及勘查进展[J]. 中国地质, 2022, 49(1): 135-150

    ZHANG Yanfei, An Zhengzhen, LIANG Shuai, et al. Distribution characteristics, genetic types and prospecting progress of graphite deposits. Geology in China [J], 2022, 49(1): 135-150.

    [20]

    张艳飞, 梁帅, 赵青, 等. 石墨矿床类型及显晶质石墨矿床成矿模式(Ⅰ): 成矿地质背景[J]. 化工矿产地质, 2020a, 42(1): 1-11, 18 doi: 10.3969/j.issn.1006-5296.2020.01.001

    ZHANG Yanfei, LIANG Shuai, ZHAO Qing, et al. Types of graphite deposits and metallogenic patterns of phanerocrystalline graphite deposits (Ⅰ): metallogenic geological background [J]. Geology of Chemical Minerals, 2020a, 42(1): 1-11, 18. doi: 10.3969/j.issn.1006-5296.2020.01.001

    [21]

    张艳飞, 梁帅, 赵青, 等. 石墨矿床类型及显晶质石墨矿床成矿模式(Ⅱ): 矿石矿物及矿化特征[J]. 化工矿产地质, 2020b, 42(2): 97-105, 124

    ZHANG Yanfei, LIANG Shuai, ZHAO Qing, et al. Types of graphite deposits and metallogenic patterns of phanerocrystalline graphite deposits (Ⅱ): ore minerals and mineralizing charateristics [J]. Geology of Chemical Minerals, 2020b, 42(2): 97-105, 124.

    [22]

    宁夏回族自治区地质调查院. 中国区域地质志•宁夏志[M]. 北京: 地质出版社, 2018

    Ningxia Hui Autonomous Region Institute of Geological Survey. The regional geology of China, Ningxia [M]. Beijing: Geological Publishing House, 2018.

    [23]

    仲佳鑫, 李欢, 李鹏, 等. 宁夏卫宁北山金场子金矿床地质特征与控矿因素分析[J]. 西北地质, 2012, 45(3): 81-92

    ZHONG Jiaxin, LI Huan, LI Peng, et al. Geological Characteristics, Ore-Controlling Factors and Mineralization Law of Gold Ore in the North Mountain of Weining Area, Ningxia[J]. Northwestern Geology, 2012, 45(3): 81-92.

    [24]

    朱建江, 刘福来, 刘福兴, 等. 胶—辽—吉造山带辽河群石墨矿碳同位素特征及成因分析[J]. 岩石学报, 2021, 37(2): 599-618 doi: 10.18654/1000-0569/2021.02.17

    ZHU Jianjiang, LIU Fulai, LIU Fuxing, et al. Carbon isotope and genesis study of graphite deposits in the Liaohe group of the Jiao-Liao-Ji orogenic belt [J]. Acta Petrologica Sinica, 2021, 37(2): 599-618. doi: 10.18654/1000-0569/2021.02.17

    [25]

    Allegre C J, Minster J F. Quantitative models of trace element behavior in magmatic processes [J]. Earth and Planetary Science Letters, 1978, 38(1): 1-25. doi: 10.1016/0012-821X(78)90123-1

    [26]

    Du Y, Song H, Tong J, et al. Changes in productivity associated with algal-microbial shifts during the Early Triassic recovery of marine ecosystems [J]. GSA Bulletin, 2021, 133(1-2), 362-378. doi: 10.1130/B35510.1

    [27]

    Hahn-Weinheimer P, Hirner, A. Isotopic evidence for the origin of graphite [J]. Geochemical Journal, 1981, 15(1): 9-15. doi: 10.2343/geochemj.15.9

    [28]

    Hoefs J. Stable isotope geochemistry [M]. 6th Edition. Berlin: Springer-Verlag, 2009, 53-107.

    [29]

    Luque F G, Pasteris J D, Wopenka B, et al. Mineral fluid-deposited graphite: Mineralogical characteristics and mechanisms of formation [J]. American Journal of Science, 1998, 298(6): 471-498. doi: 10.2475/ajs.298.6.471

    [30]

    Rudnick, R.L., Gao, S. Composition of the continental crust[A]. The crust[M]. Treatise on geochemistry, 2003, 3: 1−64

    [31]

    Schidlowski M. Application of stable carbon isotopes to early biochemical evolution on Earth [J]. Annual Review of Earth and Planetary Sciences, 1987, 15: 47-72. doi: 10.1146/annurev.ea.15.050187.000403

    [32]

    Schidlowski M. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept [J]. Precambrian Research, 2001, 106, 117-134. doi: 10.1016/S0301-9268(00)00128-5

    [33]

    Sharp Z. Principles of stable isotope geochemistry [M]. New Jersey:Pearson Education, 2007,1-344 .

    [34]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes [J]. Geological Society London Special Publications, 1989, 42(1), 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [35]

    Taylor S R , Mclennan S M. The continental crust: its composition and evolution [J]. The Journal of Geology, 1985, 94(4), 57-72.

    [36]

    Weis P L, Friedman I, Gleason J P, et al. The origin of epigenetic graphite: Evidence from isotopes [J]. Geochimica et Cosmochimica Acta, 1981, 45(12): 2325-2332. doi: 10.1016/0016-7037(81)90086-7

    [37]

    Zhu J J, Zhang L F, Tao R B, et al. The formation of graphite-rich eclogite vein in S. W. Tianshan (China) and its implication for deep carbon cycling in subduction zone [J]. Chemical Geology, 2020, 533: 119430. doi: 10.1016/j.chemgeo.2019.119430

  • 加载中

(9)

(5)

计量
  • 文章访问数:  406
  • PDF下载数:  131
  • 施引文献:  0
出版历程
收稿日期:  2022-05-06
修回日期:  2022-08-16
刊出日期:  2024-10-20

目录