Analysis of Orebody Morphology and Tectonic Genesis of the Siding Lead-Zinc Deposit of Guangxi
-
摘要:
研究矿体形貌分类,鉴别控制矿体的成矿构造类型,是成矿构造研究与预测的基础性工作,在矿山深部找矿工作中具有指导意义。广西泗顶铅锌矿床是桂北铅锌成矿区中大型矿床的典型代表,经过多年开采,其矿体的三维形貌已展露无遗,具有进行矿体形貌及构造成因研究的良好条件。基于矿体形貌视角,通过矿体形貌的几何特征及成因特征解析,建立矿体的构造成矿模式,分析讨论矿床的构造成因与动力学背景。研究结果表明:①泗顶矿区成矿构造类型分为两类,一类为早期构造流体型成矿构造,控制脉状铅锌矿体;另一类为晚期构造型成矿构造,控制蚀变岩型贫矿体,并叠加于早期脉状矿体之上。②矿体形貌由NE向右行张扭性断层控制形成的构造顺层脉型、NW向右行张性断层控制形成的构造切层脉型和脆–韧性剪切带控制形成的构造–流体型3种矿体形貌组成。基于矿体形貌建立以Ⅰ、Ⅳ号矿体为代表的构造顺层式成矿模式和以Ⅴ号矿体代表的构造切层式成矿模式。③区域动力学表明,泗顶矿区经历了多期构造运动,尤其是印支期的两次动力转换(早期SE向区域挤压力转换为EW向右行走滑剪切,晚期近EW向右行剪切则转换为EW向挤压),为矿床的形成提供了优越的动力条件。④矿田动力学分析认为,泗顶铅锌成矿作用发生在脆–韧性剪切带演化到脆性阶段,应力弱化、变形分解、递进变形、非共轴剪切和层间滑动共同控制了各类几何矿体形貌的形成。
Abstract:Studying the classification of orebody morphology and identifying the types of ore-forming structures controlling the orebody are the basic work for the research and prediction of ore-forming structures, and have guiding significance in the deep prospecting work of the mine. The Siding Lead-Zinc deposit in Guangxi is a typical representative of medium-large deposits in the Lead-Zinc metallogenic region in northern Guangxi. After many years of mining, the three-dimensional morphology of the orebody has been fully revealed, and it has good conditions for studying of the orebody morphology and structural genesis of the deposit.In this paper, based on the study of orebody morphology, the structural mineralization mode of orebody is constructed by analyzing the geometric characteristics and genesis characteristics of orebody morphology, and then the tectonic genesis of ore deposit formation is analyzed and discussed from the regional and field kinetic levels. The results show that: ① There are two types of ore-forming structures in the Siding mining area. One is the early tectonic fluid type ore-forming structure, which controls the vein Lead-Zinc orebody; The other is the late tectonic ore-forming structure, which controls the altered rock type lean orebody and superimposes on the early vein ore body. ② The orebody morphology is composed of three types of orebody morphology, namely, the structural bedding vein type formed by the control of the north-east right-trending tensional fault, the structural shear vein type formed by the control of the north-west right-trending tensional fault, and the structure-fluid type formed by the control of the brittle-ductile shear zone. Based on the orebody morphology, the structural bedding mineralization model represented by No. I and IV orebodies and the structural slicing mineralization model represented by No. V ore bodies are established. ③ The regional dynamics shows that the Siding mining area has experienced multiple tectonic movements, especially the two dynamic transformations in Indosinian period (the early SE regional compression pressure was converted to east-west rightward strike-slip shear, and the late near-EW rightward strike-slip shear was converted to east-west compression), which provided superior dynamic conditions for the formation of the deposit. ④ According to the ore field dynamics analysis, the Siding Lead-Zinc mineralization occurred in the brittle-ductile shear zone evolution to the brittle stage, and the stress weakening, deformation decomposition, progressive deformation, non-coaxial shear and interlayer Sliding jointly controlled the formation of various geometric orebody morphology.
-
Key words:
- orebody morphology /
- metallogenic structures /
- regional dynamics /
- Lead-zinc deposit /
- Guangxi Siding
-
-
图 7 印支期层滑–褶皱阶段非共轴变形分解剖面图(据汪劲草等,2016修改)
Figure 7.
图 11 区域加里东期构造应力分析简图(据龚贵伦等,2010修改)
Figure 11.
图 12 区域印支期构造应力分析简图(据龚贵伦等,2010修改)
Figure 12.
-
[1] 曹江帅. 广西泗顶铅锌矿床成矿流体及成矿机制研究[D]. 广西: 广西大学, 2018
CAO Jiangshuai. The Study on Metallogenic Fluid and Mechanismof Siding Lead Zinc Ore Field Guangxi[D]. Guangxi: Guangxi University, 2018.
[2] 曹亮, 段其发, 张权绪, 等. 扬子陆块北缘冰洞山铅锌矿床闪锌矿Rb-Sr定年及其地质意义[J]. 矿物岩石地球化学通报, 2016, 35(06): 1280-1289
CAO Liang, DUAN Qifa, ZHANG Quanxu, et al. Rb-Sr Dating of Sphalerites from the Bingdongshan Pb-Zn Deposit in the Northern Margin of the Yangtze Block and Its Geological Significance[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(06): 1280-1289.
[3] 冯群耀. 广西铅锌矿床类型及主要控矿因素和分布规律的探讨[J]. 矿床地质, 1984, 3(03): 47-56
FENG Qunyao. A Discussion on Lead-Zinc Deposits in GuangXi-Their Genetic Types the Major Ore-Controlling Elements and Ore Distribution Regularity[J]. Mineral Deposits, 1984, 3(03): 47-56.
[4] 龚贵伦, 陈广浩, 林舸, 等. 广东河台金矿构造应力场演化及构造控矿模式[J]. 矿床地质, 2010, 29(S2): 16-26
GONG Guilun, CHEN Guanghao, LIN Ge, et al. Evolution of Tectonic Ttress Field and Tectonic Ore Control Mode of HeTai Gold Mine in GuangDong[J]. Mineral Deposits, 2010, 29(S2): 16-26.
[5] 康皓钰, 余何, 张梓贺, 等. 广西泗顶铅锌矿床稀土元素特征[J]. 矿产与地质, 2018, 32(04): 655-661
KANG Haoyu, YU He, ZHANG Zihe, et al. REE Characteristics of Siding Pb-Zn Deposit in Guangxi[J]. Mineral Resources and Geology, 2018, 32(04): 655-661.
[6] 李强, 王晓虎. 扬子北缘震旦系铅锌矿床成矿地质特征及成矿模式[J]. 资源环境与工程, 2009, 23(01): 1-6
LI Qiang, WANG Xiaohu. Metallogenic Geological Characteristics and Mode of Sinian Lead-Zinc Deposits in the Northern Margin of Yangtze Landmass[J]. Resources Environment and Engineering, 2009, 23(01): 1-6.
[7] 李智明. 扬子北缘及周边地区铅锌成矿作用[D]. 西安: 长安大学, 2007
LI Zhiming. The Study on Mineralization of Zinc-Lead Deposits and Prospecting Direction in Northern Margin and Surrounding Area of the Yangtze Platform, China[D]. Shannxi: Chang’an University, 2007
[8] 刘博, 李三忠, 周永刚, 等. 桂北河池-宜州断裂带构造特征及其演化: 柳城段浅部到深部结构的启示[J]. 大地构造与成矿学, 2009, 33(04): 488-496
LIU Bo, LI Sanzhong, ZHOU Yonggang, et al. Structural Features and Evolution of the Hechi Yizhou Fault Zone Northern Guangxi insights from Shallow to Deep Structures of Its Liucheng Segment[J]. Geotectonica et Metallogenia, 2009, 33(04): 488-496.
[9] 蒙永潘, 杨善畅, 李秀珍. 广西河池-宜州断裂带变形特征及演化探讨[J]. 云南地质, 2016, 35(06): 466-471
MENG Yongpan, YANG Shanchang, LI Xiuzhen. The Deformation Feature and Aprobe Into the Evolution of HeChi-YiZhou Fault Zone in GuangXi[J]. YunNan Geology, 2016, 35(06): 466-471.
[10] 沈远超, 杨金中, 刘铁兵, 等. 胶东新型金矿-层间滑动角砾岩型金矿床[J]. 地质与勘探, 2002, 38(02): 11-14
SHEN Yuanchao, YANG Jinzhong, LIU Tiebing, et al. Interlayer-Slide-Breccia Gold Deposit-A New Type of Gold Depoosit Discovered in JiaoDong Region[J]. Geology add Prospecting, 2002, 38(02): 11-14.
[11] 沈远超, 张连昌, 刘铁兵, 等. 论层间滑动断层及其控矿作用-以山东胶莱盆地北缘金成矿带为例[J]. 地质与勘探, 2001, 37(01): 11-14+19.
SHEN Yuanchao, ZHANG Lianchang, LIU Tiebing, et al. Studies on Ore-Controlling Factors of Strike-Slip Ductile Shear Zone in hangma Gold Deposit Mengyin County Shandong Province[J]. Geology and Exploration, 2001, 37(01)11-14+19.
[12] 覃焕然. 试论广西泗顶-古丹层控型铅锌矿床成矿富集特征[J]. 广西地质, 1986, (02): 51-62.
QIN Huanran. On the Mineralization and Enrichment Featues of Stratabound Pb-Zn Deposits in Siding-Kaodan Field , Guangxi[J]. Geology of Guangxi, 1986, (02)51-62.
[13] 唐诗佳, 彭恩生, 李石锦, 等. 广西泗顶-古丹铅锌矿床的构造控矿作用及其找矿方向[J]. 桂林工学院学报, 2001, 21(01): 68-72
TANG Shijia, PENG Ensheng, LI Shijin, et al. Structrural control onore and prospective area in SiDing-GuDan lead-zinc deposit[J]. Journal of GuiLin Institute of Technology. 2001, 21(01): 68-72.
[14] 汪劲草. 成矿构造系列的基本问题[J]. 桂林工学院学报, 2009, 29(04): 423-433
WANG Jincao. Further Research in Metallotectonic Series[J]. Journal of Guilin University of Technology, 2009, 29(04): 423-433
[15] 汪劲草. 成矿构造的基本问题[J]. 地质学报, 2010, 84(01): 59-69
WANG. Jincao. Elementary issues ofMetallotectonics[J]. Acta Geologica Sinica, 2010.84(01): 59-69.
[16] 汪劲草. 矿体形貌分类及其成矿指示[J]. 桂林理工大学学报, 2011, 31(04): 473-480
WANG Jincao. Classification and Indication of the Orebody Morphology[J]. Journal of Guilin University of Technology, 2011, 31(04): 473-480.
[17] 汪劲草, 李帅, 余何, 等. 韧性剪切带型金矿三阶段构造成矿模式——以广东河台金矿床为例[J]. 大地构造与成矿学, 2020, 44(01): 20-29
WANG Jincao, LI Shuai, Yu He, et al. Three-stage Structural Mineralization Model for Ductile Shear Zone Related Gold Deposits: A Case Study of the Hetai Gold Deposit, Guangdong, South China[J]. Geotectonica et Metallogenia, 2020, 44(01): 20-29.
[18] 汪劲草, 蒙永潘, 江楠, 等. 广西河池-宜州断裂带是褶皱-冲断带置疑[J]. 桂林理工大学学报, 2015, 35(04): 860
WANG Jincao, MENG Yongpan, JIANG Nan, et al. The Guangxi Hechi-Yizhou Fault Zone is a Fold-the Washout Zone is Questionable[J]. Journal of Guilin University of Technology, 2015, 35(04): 860.
[19] 汪劲草, 彭恩生, 雷鸣波, 等. 湘西金矿沃溪断层的形成与演化[J]. 桂林工学院学报, 2000, 20(04): 315-318
WANG Jincao, PENG Ensheng, LEI Mingbo, et al. The formation and evolution of Woxi fault, Xiangxi Gold Mine Western Hunan[J]. Journal of GuiLin Institute of Technology, 2000, 20(04): 315-318.
[20] 汪劲草, 余何, 江楠, 等. 广西大厂矿田成矿构造系列与成矿系列的时-空联系[J]. 桂林工学院学报, 2016, 36(04): 633-643
WANG Jincao, YU He, JIANG Nan, et al. Temporal and spatial relation between the metallotectonic series and metallogenic series in the Dachang orefield, Guangxi[J]. Journal of Guilin Institute of Technology, 2016, 36(04): 633-643.
[21] 王步清, 彭恩生, 唐诗佳, 等. 广西泗顶铅锌矿层间滑动带地质特征及控矿作用[J]. 广西地质, 2000, 13(02): 35-38
WANG Buqing, PENG Ensheng, TANG Shijia, et al. The Geologic Characteristics and Ore-Controlling Action of Interlayer Sliding Belts in SiDing Lead-Zinc Mine[J]. GuangXi Geology, 2000, 13(02): 35-38.
[22] 王维. 广西泗顶-古丹铅锌矿床成矿规律及矿体预测[J]. 南方国土资源, 2012, (04): 33-35+39.
[23] 王岳军, 王洋, 张玉芝, 等. 华南印支期变形格局及多陆块围限模型[J]. 大地构造与成矿学, 2022, 46(03): 399-415
WANG Yuejun, WANG Yang, ZHANG Yuzhi, et al. Indosinian Deformation in the South China Block and Interaction with the Adjoining Blocks[J]. Geotectonica et Metallogenia, 2022, 46(03): 399-415.
[24] 韦龙明, 林锦富, 李文铅, 等. 广东梅子窝钨矿“五层楼”叠加现象探讨[J]. 地质学报, 2008, 82(07): 888-893+1018
WEI Llongming, LIN Jinfu, LI Wenqian, et al. Discussion on “Five stored” Superposed Model of Meiziwo Tungsten Deposit Guangdong[J]. Actageologica Sinica, 2008, 82(07): 888-893+1018.
[25] 吴新斌, 陈剑祥, 郝云蛟, 等. 扬子北缘志留系新滩组震积岩的发现及其地质意义[J]. 西北地质, 2013, 46(02): 81-86
WU Xinbin, CHEN Jianxiang, HAO Yunjiao, et al. Discovery and Geological Significance of the Silurian Xintan Formation Seismit Along the North Margin of Yangtze Plate. [J]. Northwestern Geology, 2013, 46(02): 81-86.
[26] 谢世业, 黄有德, 张国林, 等. 广西泗顶-古丹铅锌矿田地质特征成矿规律及找矿标志[J]. 地质找矿论丛, 2001, 16(01): 38-41
XIE Shiye, HUANG Youde, ZHANG Guolin, et al. The Study on the Ore-Forming Law and the Prospecting Marks of the SiDing-GuDan Lead-Zinc Ore Field, GuangXi[J]. Contributions to Geology and Mineral Resources Res, 2001, 16(01): 38-41.
[27] 杨楚雄, 扶同逸, 覃焕然. 广西泗顶-古丹铅锌矿田中、上泥盆统碳酸盐相的特征与成矿关系的探讨[J]. 沉积学报, 1985, 3(02): 97-107+157
YANG Chuxiong, FU Tongyi, QIN Huanran. Study on the Relationship Between the Charact-Eristics of Carbonate Facies of the Upper and Middle Devonian Series and Mineralization of Lead-Zinc Deposits in SiDing-GudanDistrict, GuangXi. [J]. ActaSedimentologicaSinica, 1985, 3(02): 97-107+157.
[28] 余何. 江南古陆西南缘与层滑作用有关的铅锌矿床的成矿时代与机制[D]. 桂林: 桂林理工大学, 2018
YU He. The metallogenic age and ore-forming mechanism of the lead-zinc deposits related to layer-sliding in southwestern margin of. Jiangnan Old Land, South China[D]. Guilin: Guilin University of Technology, 2018
[29] 赵长缨, 段立志, 马中豪. 上扬子地块北缘灯影组硅质岩系地球化学特征及其成因[J]. 西北地质, 2015, 48(02): 31-42
ZHAO Changying, DUAN Lizhi, MA Zhonghao. Geochemical Characteristics and Genesis of Cherts of Dengying Formation on the North Rim of Yangzi Block[J]. Northwestern Geology, 2015, 48(02): 31-42.
[30] 张长青, 余金杰, 毛景文, 等. 密西西比型(MVT)铅锌矿床研究进展[J]. 矿床地质, 2009, 28(2): 195-210
ZHANG Changqing, YU Jinjie, MAO Jingwen, et al. Advances in the study of Mississippi Valley-type deposits[J]. Mineral Deposits, 2009, 28(2): 195-210
[31] 周泽昌. 广西融安县泗顶铅锌矿找矿方向探析[J]. 企业科技与发展, 2011, (13): 124-125+128
ZHOU Zechang. Analysis of the prospecting direction of Siding lead and zinc ore in Rong'an County, Guangxi[J]. Enterprise technology and development, 2011, (13): 124-125+128.
[32] Gandhi S M, Sarkar B C . Essentials of Mineral Exploration and Evaluation[M]. Ore Geology Reviews, 2016, 23-52.
[33] Huang C, Du G, Jiang H, Xie J, Zha D, Li H, Lai C-K. Ore-Forming Fluids Characteristics and Metallogenesis of the Anjing Hitam Pb-Zn Deposit in Northern Sumatra, Indonesia. [J]. Journal of Earth Science, 2019, 30(1): 131-141. doi: 10.1007/s12583-019-0859-z
[34] Wang J C, Wang Z Y, Geng W H, et al. Discovery and Significance of Large Detachment Faults in the Western Margin of Yunkai Uplift[J]. Chinese Science Bulletin, 1995, 1369-1373
[35] Yu H, Tang J, Li H, Kang H. Metallogenesis of the Siding Pb-Zn deposit in Guangxi, South China: Rb-Sr dating and C-O-S-Pb isotopic constraints. [J]. Ore Geology Reviews, 2020, 121(2020): 103499
-