Study on Geochronology, Rock Genesis and Tectonic Background of Luocheng Granodiorite in Longshou Mountain Tectonic Belt
-
摘要:
阿拉善地块龙首山成矿带大地构造位置处于华北板块、祁连造山带及中亚造山带的结合部,其所处构造环境的特殊性对区域构造演化及板块运动有着重大意义。该地区的岩浆演化及构造背景研究较为薄弱,笔者对罗城黑云母花岗闪长岩开展了岩石地球化学和锆石U-Pb定年及Lu-Hf同位素研究工作,LA-ICP-MS锆石U-Pb测年显示结果为(289±3)Ma(MSWD=0.57),侵位时间为早二叠世。罗城花岗闪长岩为准铝质,钙碱性系列,Mg#值介于0.64~0.66,显示I型花岗岩特征。研究区这些早二叠世花岗闪长岩显示出轻稀土元素相对富集和重稀土元素相对亏损的特征,LREE/HREE值为4.20~5.30,(La/Yb)N为3.69~5.46,并且具有轻微Eu 负异常(δEu:0.80~0.96)。原始地幔标准化图解中,这些样品相对富集大离子亲石元素(Rb、Th和K等),亏损高场强元素(Nb、Ta、Ti和P等),显示俯冲相关的弧岩浆地球化学特征。罗城地区早二叠世侵入岩具有正的εHf(t)值(+4.37 to +6.88)和相对年轻的二阶段模式年龄(T(DMC)=808.6~952.5 Ma)。野外地质特征结合地球化学数据表明罗城花岗闪长岩为壳源岩浆与幔源岩浆发生混合作用的产物。结合区域背景和前言研究数据分析,阿拉善西部龙首山构造带早二叠世时可能还存在与俯冲有关的弧岩浆活动。
Abstract:The geotectonic location of Longshou Mountain Metallogenic Belt of the Alxa Massif is at the junction of the North China Plate, the Qilian Orogenic Belt, and the Central Asian Orogenic Belt, and the particularity of the tectonic environment is of great significance to the regional tectonic evolution and plate movement. The magmatic evolution and tectonic background of this area are not well studied. The author has carried out studies on the rock geochemistry, zircon U-Pb dating, and Lu-Hf isotope of Luocheng biotite granodiorite. LA-ICP-MS zircon U-Pb dating shows a value of (289±3)Ma (MSWD=0.57), and the emplacement time of the rock is in the Early Permian. Luocheng Granodiorite is quasi aluminous, calc alkaline series, with Mg# value between 0.64-0.66, showing the characteristics of I-type granite. These early Permian Granodiorite in the study area show the characteristics of relative enrichment of light REE and relative depletion of heavy REE, LREE/HREE ratio was 4.20-5.30, and (La/Yb) N was 3.69-5.46, And it has a slight negative Eu anomaly(δEu: 0.80-0.96). In the standardized diagram of the primitive mantle, In the standardized diagram of the original mantle, these samples are relatively rich in large ion lithophile elements (Rb, Th, K, etc.) and depleted in high field strength elements (Nb, Ta, Ti, P, etc.), showing the geochemical characteristics of subduction related arc magmas. The early Permian intrusive rocks in the Luocheng area have positive ε The Hf (t) value (+4.37 to+6.88) and the relatively young two-stage mode age (T (DMC)=808.6 to 952.5 Ma). Field geological characteristics and geochemical data show that Luocheng Granodiorite is the product of mixing of crust derived magma and mantle derived magma. Based on the analysis of regional background and foreword research data, it is possible that arc magmatic activity related to subduction existed in the Longshoushan tectonic belt in the western part of Alxa during the Early Permian.
-
Key words:
- granodiorite /
- geochemistry /
- Hf isot-opic /
- LongShou Mountain /
- tectonic evolution
-
-
图 5 罗城黑云母花岗闪长岩锆石εHf(t)-t(Ma)图解(a)(据李良等,2018)和地壳模式年龄T(DMC)统计直方图(b)
Figure 5.
图 6 罗城黑云母花岗闪长岩Q-A-P图解(a)(据Streckeisen, 1976)、SiO2-(Na2O+K2O-CaO)图解(b)(据Peccerillo et al., 1976)、SiO2-K2O图解(c)(据Peccerillo et al., 1976)及A/NK-A/CNK图解(d)(据Maniar et al.,1989)
Figure 6.
图 7 罗城黑云母花岗闪长岩的稀土元素球粒陨石标准化配分曲线图(a)(据Taylor et al., 1985)和微量元素原始地幔标准化蛛网图(b)(据Sun et al., 1989)
Figure 7.
图 8 罗城黑云母花岗闪长岩K2O-Na2O图解(a)及Zr、Ce、Y-10000Ga图解(b、c、d)(据Whalen et al.,1987)
Figure 8.
图 9 罗城黑云母花岗闪长岩C/MF-A/MF图解(a)(据Alther et al., 2000)及δEu-(La/Yb)N图解(b)(据王钊飞等,2019)
Figure 9.
图 11 花岗闪长岩构造背景判别Rb-(Y+Nb)(a)、Nb-Y(b)(据Pearce et al., 1984)、Hf-Rb/30-3Ta(c)(据Harris et al., 1986)图解及R1-R2(d)(据Batchelor et al., 1985)图解
Figure 11.
表 1 罗城黑云母花岗闪长岩主量元素(%)、微量元素(10−6)、稀土元素(10−6)分析结果表
Table 1. Analysis results of major elements (%), trace elements (10−6) and rare earth elements (10−6) in Luocheng biotite granodiorite
样品编号 LCYT03 LCYT04 LCYT05 LCYT06 SiO2 59.84 58.75 58.52 59.09 Al2O3 16.91 17.25 17.28 17.28 Fe2O3 7.13 7.82 7.55 7.61 CaO 6.33 6.70 6.93 6.68 MgO 3.13 3.38 3.53 3.34 K2O 1.87 1.49 1.49 1.54 Na2O 2.52 2.60 2.55 2.60 P2O5 0.13 0.15 0.15 0.15 TiO2 0.68 0.74 0.77 0.75 MnO 0.13 0.14 0.14 0.14 LOI 1.03 0.74 0.85 0.60 总和 99.70 99.76 99.75 99.79 K2O+Na2O 4.40 4.09 4.04 4.15 K2O/Na2O 0.74 0.57 0.59 0.59 δ 1.15 1.06 1.05 1.07 A/NK 2.74 2.93 2.98 2.9 A/CNK 0.97 0.97 0.96 0.97 Rb 61.1 49.2 40.6 46.9 Th 3.37 4.58 5.70 8.46 U 0.79 0.72 0.74 0.75 Nb 4.48 4.76 4.64 4.64 Sr 376 429 413 403 Zr 84.3 112 88.6 118 Hf 2.34 2.79 2.23 2.97 F 454 320 663 360 Sn <1.80 <1.80 <1.80 <1.80 Cr 12.9 17.6 14.1 14.1 Li 16.8 18.3 17.3 17.4 Be 0.76 0.87 0.86 0.79 V 166 186 180 174 Co 15.3 16.2 15.6 15.3 Ni 8.36 10.9 11.2 10.4 Ga 16.6 17.7 16.3 16.4 Cs 2.52 2.92 2.69 3.15 Ta 0.33 0.35 0.34 0.35 W 2.30 1.91 1.81 1.80 Bi 0.073 0.070 <0.050 0.057 La 12.0 14.3 12.5 12.5 Ce 27.1 28.9 25.5 25.7 Pr 3.60 3.59 3.32 3.21 Nd 16.4 15.3 14.6 14.1 Sm 3.91 3.37 3.28 3.14 Eu 1.05 1.07 1.05 1.03 Gd 4.14 3.54 3.49 3.41 Tb 0.66 0.55 0.54 0.52 Dy 4.04 3.28 3.24 3.15 Ho 0.83 0.68 0.67 0.65 Er 2.54 2.03 2.02 1.95 Tm 0.36 0.29 0.29 0.28 Yb 2.33 1.88 1.87 1.84 Lu 0.36 0.30 0.30 0.29 Y 21.3 17.2 16.9 16.4 ΣREE 79.32 79.08 72.67 71.77 LREE 64.06 66.53 60.25 59.68 HREE 15.26 12.55 12.42 12.09 LREE/HREE 4.20 5.30 4.85 4.94 (La/Yb)N 3.69 5.46 4.79 4.87 δEu 0.80 0.95 0.95 0.96 δCe 1.01 0.99 0.97 0.99 表 2 罗城花岗闪长岩(LCYT01)锆石LA-ICP-MS测年结果
Table 2. Zircon LA-ICP-MS dating results of Luocheng granodiorite (LCYT01)
测点号 含量(10−6) Th/U 同位素比值 同位素年龄 Pb Th U 207Pb/206Pb ±1δ 207Pb/235U ±1δ 206Pb/238U ±1δ 208Pb/232Th ±1δ 207Pb/206Pb ±1δ 207Pb/235U ±1δ 206Pb/238U ±1δ 208Pb/232Th ±1δ LCYT001 15.96 79.28 81.67 0.97 0.05153 0.00423 0.32079 0.02551 0.04511 0.00102 0.01452 0.00048 264.4 177.81 282.5 19.61 284.5 6.28 291.3 9.56 LCYT002 14.25 47.28 72.22 0.65 0.05202 0.0046 0.32939 0.02827 0.04589 0.00108 0.01269 0.00063 286.1 189.7 289.1 21.59 289.2 6.68 255 12.64 LCYT003 12.04 34.81 63.55 0.55 0.0524 0.00697 0.32463 0.04227 0.0449 0.00134 0.01375 0.00088 302.7 277.82 285.5 32.4 283.2 8.26 276.1 17.48 LCYT004 19.92 93.99 98.06 0.96 0.04923 0.00498 0.31772 0.03138 0.04678 0.00114 0.01432 0.00059 158.7 220.85 280.1 24.18 294.7 7.05 287.5 11.7 LCYT005 11.37 41.91 57.97 0.72 0.0517 0.00762 0.33365 0.04817 0.04678 0.00152 0.01611 0.00095 272.2 306.78 292.4 36.67 294.7 9.39 323 18.95 LCYT006 16.79 80.92 85.36 0.95 0.05021 0.00438 0.31261 0.02651 0.04513 0.00103 0.01345 0.00049 204.9 190.68 276.2 20.51 284.6 6.35 270 9.73 LCYT007 27.09 129.66 147.36 0.88 0.05412 0.00356 0.342 0.0216 0.04582 0.00096 0.01384 0.00042 375.8 141.54 298.7 16.34 288.8 5.93 277.8 8.4 LCYT008 12.51 45.55 65.96 0.69 0.05029 0.0043 0.32015 0.0266 0.04616 0.00106 0.01535 0.00062 208.3 187.16 282 20.46 290.9 6.51 307.8 12.31 LCYT009 13.69 45.68 72.34 0.63 0.05153 0.00444 0.33081 0.02763 0.04656 0.00109 0.01519 0.00068 264.4 186.14 290.2 21.08 293.3 6.73 304.7 13.59 LCYT010 12.68 46.02 66.65 0.69 0.05115 0.00472 0.33038 0.0297 0.04685 0.00111 0.01457 0.00063 247.4 199.46 289.9 22.67 295.1 6.83 292.5 12.53 LCYT011 13.09 49.92 68.97 0.72 0.04792 0.00563 0.30937 0.03563 0.04682 0.00122 0.01473 0.00087 94.2 257.92 273.7 27.63 295 7.49 295.6 17.3 LCYT012 12.53 47.8 65.53 0.73 0.0521 0.00482 0.33683 0.03033 0.04689 0.00112 0.01606 0.00063 289.7 198 294.8 23.04 295.4 6.87 322 12.57 LCYT013 18.31 92.71 98.11 0.94 0.05178 0.0039 0.32956 0.02399 0.04618 0.001 0.01362 0.00044 275.6 163.56 289.2 18.32 291 6.19 273.3 8.78 LCYT014 19 93.38 105.35 0.89 0.05329 0.00398 0.3273 0.02358 0.04457 0.00099 0.01433 0.00046 340.9 160.32 287.5 18.04 281.1 6.09 287.6 9.21 LCYT015 15.16 51.53 80.72 0.64 0.04948 0.00412 0.30521 0.02472 0.04476 0.00098 0.01424 0.00055 170.8 183.56 270.5 19.23 282.3 6.06 285.7 11.06 LCYT016 14.01 55.43 76.33 0.73 0.0503 0.00537 0.30848 0.03208 0.04451 0.00118 0.01286 0.00065 209 229.96 273 24.9 280.7 7.27 258.2 12.91 LCYT017 11.3 45.88 60.72 0.76 0.05239 0.00499 0.33231 0.03079 0.04604 0.00115 0.01288 0.0006 302.4 203.45 291.3 23.47 290.1 7.1 258.6 11.9 LCYT018 16.38 73.42 88.24 0.83 0.05321 0.0037 0.3292 0.02201 0.0449 0.00096 0.01409 0.00044 337.7 149.52 289 16.81 283.2 5.92 282.7 8.81 LCYT019 15.81 76.58 80.92 0.95 0.05166 0.00378 0.32813 0.02317 0.0461 0.00099 0.01466 0.00044 270.4 159.18 288.1 17.72 290.6 6.07 294.2 8.75 LCYT020 13.2 53.42 68.41 0.78 0.05023 0.00423 0.31534 0.02582 0.04557 0.00103 0.0151 0.00054 205.7 184.61 278.3 19.93 287.3 6.36 302.9 10.68 LCYT021 10.77 36.85 52.88 0.70 0.05095 0.0044 0.32225 0.02702 0.04592 0.00105 0.01367 0.00064 238.6 187.4 283.6 20.75 289.4 6.46 274.3 12.67 LCYT022 13.95 47.61 68.78 0.69 0.05283 0.00388 0.34372 0.02436 0.04724 0.00102 0.01389 0.00055 321.3 157.94 300 18.41 297.6 6.25 278.8 10.94 LCYT023 23.03 103.73 117.27 0.88 0.05235 0.00313 0.33694 0.01926 0.04673 0.00094 0.01421 0.00041 300.6 130.55 294.9 14.63 294.4 5.77 285.2 8.1 LCYT024 16.81 56.88 85.69 0.66 0.05387 0.00347 0.34195 0.02113 0.04609 0.00095 0.01337 0.00048 365.6 138.52 298.6 15.99 290.5 5.83 268.4 9.65 LCYT025 14.8 67.05 76.38 0.88 0.05203 0.00384 0.33011 0.02359 0.04608 0.00099 0.01419 0.00047 286.8 160.34 289.7 18 290.4 6.11 284.8 9.33 表 3 罗城花岗闪长岩锆石分析点位微量元素(10−6)测试结果
Table 3. Test results of trace elements (10−6) at zircon analysis points of Luocheng granodiorite
测点号 Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Ta LCYT001 1.10 0.06 8.23 0.05 0.23 0.49 1.28 27.74 0.78 107.27 40.27 181.12 35.88 339.17 66.63 0.28 LCYT002 0.49 0.04 6.69 0.03 2.07 3.33 0.40 11.13 8.82 67.14 26.56 126.02 27.32 290.78 57.98 0.24 LCYT003 0.61 0.00 6.26 0.02 0.49 2.64 0.29 7.43 4.65 45.16 17.35 87.13 19.02 192.36 38.24 0.27 LCYT004 0.63 0.06 9.25 0.08 0.44 0.69 1.15 25.90 3.00 112.88 44.64 196.44 39.56 377.09 71.61 0.26 LCYT005 0.55 0.00 6.42 0.03 1.79 4.98 0.36 8.45 9.99 40.51 19.27 87.53 19.76 189.52 37.30 0.23 LCYT006 0.52 0.01 9.03 0.05 0.63 1.34 0.91 24.92 3.67 102.58 38.80 175.98 35.30 323.64 65.73 0.28 LCYT007 0.46 0.02 17.04 0.11 1.55 2.65 0.85 24.04 6.96 113.49 45.17 206.58 43.34 418.84 82.25 0.41 LCYT008 1.37 0.00 7.31 0.03 1.49 3.08 0.46 10.50 8.69 50.85 20.86 97.32 21.63 218.50 42.57 0.30 LCYT009 0.53 0.04 7.76 0.02 0.67 1.58 0.24 7.99 4.06 43.08 18.56 85.81 19.58 193.52 36.74 0.31 LCYT010 0.65 0.00 7.39 0.03 0.40 1.28 0.24 11.38 3.43 52.67 20.97 98.21 22.28 213.94 42.28 0.26 LCYT011 0.67 0.01 7.65 0.05 0.44 2.14 0.43 11.65 4.08 54.24 22.14 101.02 21.59 221.82 41.65 0.21 LCYT012 0.58 0.24 7.21 0.07 0.73 1.88 0.48 9.62 4.43 51.70 20.95 100.70 22.19 222.33 43.83 0.39 LCYT013 3.01 0.01 9.21 0.08 1.56 2.82 0.95 24.93 3.94 113.56 45.37 198.15 41.36 399.32 71.97 0.38 LCYT014 0.66 0.01 9.65 0.07 1.79 3.63 1.15 28.87 9.60 117.65 44.48 198.85 41.00 392.05 76.11 0.34 LCYT015 0.58 0.00 8.44 0.02 2.16 4.68 0.33 10.50 9.83 52.88 20.95 100.98 22.47 230.32 44.42 0.31 LCYT016 0.74 0.00 7.73 0.04 0.49 1.29 0.40 12.46 4.08 61.43 26.20 120.97 26.57 261.96 52.64 0.38 LCYT017 0.73 0.00 6.93 0.02 0.87 2.13 0.43 12.06 5.04 54.07 23.41 106.05 23.33 232.88 44.25 0.33 LCYT018 0.84 0.01 8.09 0.06 0.57 1.82 0.83 20.89 4.58 92.58 36.57 172.39 35.31 347.52 67.40 0.29 LCYT019 0.61 0.00 8.04 0.06 1.53 3.32 0.97 26.28 7.25 103.33 41.09 175.93 36.48 349.56 66.29 0.23 LCYT020 0.47 0.00 7.31 0.02 1.72 5.06 0.39 14.22 8.78 63.23 24.83 115.49 25.21 238.91 45.30 0.22 LCYT021 0.57 0.01 5.70 0.02 0.69 1.87 0.53 10.94 5.15 53.16 21.38 104.62 22.91 221.56 45.69 0.30 LCYT022 0.53 0.04 6.60 0.03 0.27 1.73 0.46 12.33 3.89 67.24 25.79 122.86 27.12 273.00 52.93 0.28 LCYT023 0.70 0.04 9.56 0.09 0.57 1.92 1.18 27.41 5.00 122.96 49.00 227.37 46.39 456.07 89.13 0.38 LCYT024 1.14 0.04 8.63 0.02 1.85 4.19 0.28 9.30 10.49 48.68 20.06 95.23 20.74 214.10 41.88 0.34 LCYT025 1.12 0.02 7.63 0.07 1.41 2.91 1.04 22.23 4.01 93.47 36.23 160.65 34.00 327.88 65.05 0.25 表 4 黑云母花岗闪长岩锆石Hf同位素分析结果
Table 4. Zircon Hf isotope analysis results of biotite granodiorite
分析点 t(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf ±2σ Hfi εHf (0) εHf (t) ±1σ T(DM1) T(DMC) ±1σ fLu/Hf LCYT01-01 284.5 0.018558653 0.000625497 0.282772262 0.0000194150 0.282769 0.079994272 6.14162 0.679525 634.4 846.8 0.06673 - 0.9583 LCYT01-02 289.2 0.021350813 0.00072988 0.282742229 0.0000173343 0.282738 - 0.982120012 5.16050 0.606701 676.8 910.5 0.065471 - 0.95134 LCYT01-03 283.2 0.018541903 0.0006332 0.282761526 0.0000162177 0.282758 - 0.299686693 5.73214 0.56762 649.0 871.0 0.062774 - 0.95779 LCYT01-04 294.7 0.022088228 0.000738473 0.282787588 0.0000174089 0.282784 0.621999168 6.88254 0.609311 615.4 808.6 0.063449 - 0.95077 LCYT01-05 294.7 0.016473205 0.000610408 0.282734375 0.0000178101 0.282731 - 1.259864349 5.02445 0.623354 685.4 922.9 0.066228 - 0.95931 LCYT01-06 284.6 0.03087808 0.00103004 0.282748701 0.0000169380 0.282743 - 0.753226632 5.23386 0.59283 673.2 902.5 0.065308 - 0.93133 LCYT01-07 288.8 0.019725731 0.000669661 0.282759209 0.0000166409 0.282756 - 0.381620593 5.76427 0.582432 652.8 873.1 0.063558 - 0.95536 LCYT01-08 290.9 0.025750031 0.000867335 0.282742988 0.0000180678 0.282738 - 0.955258813 5.19757 0.632374 678.1 909.3 0.066791 - 0.94218 LCYT01-09 293.3 0.021818077 0.00074069 0.282752659 0.0000170188 0.282749 - 0.61326993 5.61588 0.595659 662.8 885.4 0.06456 - 0.95062 LCYT01-10 295.1 0.031810315 0.001072333 0.282760072 0.0000185273 0.282754 - 0.35109486 5.85224 0.648455 658.3 872.0 0.067113 - 0.92851 LCYT01-11 295 0.032320695 0.00106083 0.282770029 0.0000187588 0.282764 0.001027859 6.20471 0.656558 644.5 850.3 0.066935 - 0.92928 LCYT01-12 295.4 0.025753941 0.00084072 0.282744619 0.0000195056 0.28274 - 0.897570925 5.35710 0.682698 675.5 902.8 0.068675 - 0.94395 LCYT01-13 291 0.042050552 0.001378472 0.282744602 0.0000188351 0.282737 - 0.898174811 5.15840 0.659227 684.9 911.5 0.069048 - 0.9081 LCYT01-14 281.1 0.025917388 0.000895112 0.282777258 0.0000173229 0.282773 0.256671065 6.19473 0.606302 631.9 840.9 0.064172 - 0.94033 LCYT01-15 282.3 0.012222351 0.00042471 0.282730661 0.0000185893 0.282728 - 1.391186427 4.65946 0.650625 687.1 936.4 0.06705 - 0.97169 LCYT01-16 280.7 0.026071795 0.00089378 0.282726048 0.0000187777 0.282721 - 1.5543273 4.37430 0.65722 701.7 952.5 0.068661 - 0.94041 LCYT01-17 290.1 0.026377494 0.000892334 0.282753361 0.0000177671 0.282749 - 0.588435111 5.54265 0.621848 664.4 887.5 0.065933 - 0.94051 LCYT01-18 283.2 0.024916918 0.000880457 0.282778938 0.0000203212 0.282774 0.316093287 6.30197 0.711244 629.4 835.9 0.068288 - 0.9413 LCYT01-19 290.6 0.018210323 0.000633771 0.282781801 0.0000175364 0.282778 0.417339793 6.60951 0.613775 621.6 822.4 0.063668 - 0.95775 LCYT01-20 287.3 0.01802085 0.000615423 0.282772775 0.0000170572 0.282769 0.098119936 6.22222 0.597003 633.5 843.9 0.06338 - 0.95897 LCYT01-21 289.4 0.020384277 0.000718113 0.282742372 0.0000184710 0.282738 - 0.9770409 5.17215 0.646485 676.4 909.9 0.067032 - 0.95213 LCYT01-22 297.6 0.02594746 0.000881354 0.282760012 0.0000161587 0.282755 - 0.353235735 5.94105 0.565556 655.2 868.5 0.063322 - 0.94124 LCYT01-23 294.4 0.029427132 0.001014853 0.282726672 0.0000206482 0.282721 - 1.532286504 4.66656 0.722688 703.0 944.4 0.071574 - 0.93234 LCYT01-24 290.5 0.018539508 0.000641115 0.282769911 0.0000162977 0.282766 - 0.003162189 6.18517 0.570421 637.8 848.5 0.062508 - 0.95726 LCYT01-25 290.4 0.021881036 0.000749457 0.282741158 0.0000155788 0.282737 - 1.019970646 5.14473 0.545259 678.6 912.3 0.063102 - 0.95004 -
[1] 董国强, 余君鹏, 李通国, 等. 甘肃龙首山西山头窑地区中酸性岩体年代学、地球化学特征及构造意义[J]. 新疆地质, 2022.40(3): 425-433 doi: 10.3969/j.issn.1000-8845.2022.03.018
Dong Guoqiang, Yu Junpeng, Li Tongguo, et al. Geochronology, Geochemistry and Tectonic Significance of Intermediate Acid Magmatic Rocks in Shantouyao Area, West of Longshou Mountain, Gansu Province[J]. XinJiang Geology, 2022.40(3): 425-433. doi: 10.3969/j.issn.1000-8845.2022.03.018
[2] 甘肃省地质局. 高台幅、平川幅1: 200000区域地质测量报告[R].甘肃省地质局, 1974.
[3] 焦建刚,汤中立,闫海卿,等.甘肃高台-临泽地区109-2隐伏岩体岩石地球化学特征[J]. 大地构造与成矿学,2007,31(2):218-225.
Jiao Jiangang, Tang Zhongli, Yan Haiqing, et al.Lithogeochemical characteristics of 109-2 hidden ultramafic intrusions at gaotai-linze, gansu province[J]. Geotecton ica etM eta llogenia,2007,31(2):218-225.
[4] 刘文恒, 潘家永, 刘晓东, 等, 甘肃龙首山青山堡花岗岩成因及其构造意义: 元素地球化学、锆石U-Pb年龄和Sr-Nd同位素约束[J]. 矿物岩石, 2019, 39(4): 26-40
Liu Wenheng, Pan Jiayong, Liu Xiaodong, et al. Petrogenesis and tectonic implication of qingshanbao pluton in longshou moutains, gansu: Constraints from elemental geochemistry, zircon U-Pb age and Sr-Nd isotopes[J]. Mineral Petrol, 2019, 39(4): 26-40.
[5] 李良, 孙丰月, 李碧乐, 等. 漠河地区黑云母花岗闪长岩地球化学、Hf同位素特征及其成因[J]. 地球科学, 2018, 43(2): 417-434
Li Liang, Sun Fengyue, Li Bile, et al. Geochemistry, Hf Isotopes and Petrogenesis of Biotite Granodiorites in the Mohe Area[J]. Earth Science, 2018, 43(2): 417-434.
[6] 李宏卫, 屈尚侠, 林小明, 等. 广东新丰新坪花岗闪长岩(104Ma)地球化学、锆石U-Pb年龄和Hf同位素研究[J]. 中国地质, 2021, 48(5): 1524-1539
Li Hongwei, Qu Shangxia, Lin Xiaoming, et al. Petrogeochemistry, zircon U-Pb age and Hfisotope of Xinping granodiorite(104Ma) in Xinfeng area, Guangdong Province[J]. Geology in China, 2021, 48(5): 1524-1539.
[7] 李金超, 国显正, 孔会磊, 等. 东昆仑浪麦滩地区A型花岗岩年代学地球化学特征及其地质意义[J]. 地质学报, 2021, 95(5): 1508-1522 doi: 10.3969/j.issn.0001-5717.2021.05.014
Li Jinchao, Guo Xianzheng, Kong Huilei, et al. Geochronology, geochemical characteristics and geological significance of A-type granite from the Langmaitan area, East Kunlun[J]. Acta Geologica Sinica, 2021, 95(5): 1508-1522. doi: 10.3969/j.issn.0001-5717.2021.05.014
[8] 李平, 朱涛, 吕鹏瑞, 等. 西天山早寒武世夏特辉长岩: 南天山洋早期俯冲的岩浆记录[J]. 西北地质, 2024, 57(3): 44−58.
LI Ping, ZHU Tao, LÜ Pengrui, et al. Early Cambrian Xiate Gabbro in Western Tianshan: Magmatic Records of Initial Subduction of the South Tianshan Ocean[J]. Northwestern Geology, 2024, 57(3): 44−58.
[9] 李艳广, 汪双双, 刘民武, 等. 斜锆石LA-ICP-MSU-Pb定年方法及应用[J]. 地质学报, 2015, 89(12 ): 2400-2418 doi: 10.3969/j.issn.0001-5717.2015.12.015
Li Yanguang, Wang Shuangshuang, Liu Minwu, et al. U-Pb Datin g Study of Baddeleyite by LA-ICP-MS: Technique and Application[J]. Acta Geologica Sinica, 2015, 89(12 ): 2400-2418. doi: 10.3969/j.issn.0001-5717.2015.12.015
[10] 牛宇奔, 刘文恒, 刘晓东, 等. 甘肃龙首山成矿带青山堡岩体地球化学特征及成因意义[J]. 科学技术与工程, 2018, 18(34): 11-21 doi: 10.3969/j.issn.1671-1815.2018.34.002
Niu Yunben, Liu Wenheng, Liu Xiaodong, et al. Geochemistry and petrogenesis of Qingshanbao pluton of Longshoushan metallogenic belt in Gansu[J]. Science Technology and Engineering, 2018, 18(34): 11-21. doi: 10.3969/j.issn.1671-1815.2018.34.002
[11] 强利刚,王刚,邵东,等.龙首山成矿带地质构造演化研究[J].西部资源,2019,(05):23-24.
Qiang Ligang, Wang Gang, Shao Dong, et al. Study on the geological structure evolution of the Longshou Mountain ore-forming belt [J].Western Resources,2019,(05):23-24.
[12] 宋东方, 肖文交, 韩春明, 等. 北山中部增生造山过程: 构造变形和40Ar-39Ar年代学制约[J]. 岩石学报, 2018, 34(7): 2087-2098
Song Dongfang, Xiao Wenjiao, Han Chunming, et al. Accretionary processes of the central segment of Beishan: Constraints from structural deformation and 40Ar-39Ar geochronology. Acta Petrologica Sinica, 2018, 34(7): 2087-2098.
[13] 谭文娟, 杨合群, 张小平, 等. 祁连及邻区成矿区带的划分[J]. 地质找矿论丛, 2012, 27(01): 9-15 doi: 10.3969/j.issn.1001-1412.2012.01.002
Tan Wenjuan, Yang Hequn, Zhang Xiaoping, et al. Division of metallogenic belts in Qilian moutain and adjacent areas[J]. Contributions to Geology and Mineral Resources Research, 2012, 27(01): 9-15. doi: 10.3969/j.issn.1001-1412.2012.01.002
[14] 汤中立, 白云来. 华北古大陆西南边缘构造格架与成矿系统[J]. 地学前缘, 1999, 6(2): 271-284 doi: 10.3321/j.issn:1005-2321.1999.02.006
Tang Zhongli, Bai Yunlai. Geotectonic framework and metallogenic system in the southwest margin of north China paleocontinent[J]. Earth Science Frontiers, 1999, 6(2): 271-284. doi: 10.3321/j.issn:1005-2321.1999.02.006
[15] 王德滋, 谢磊. 岩浆混合作用: 来自岩石包体的证据[J]. 高校地质学报, 2008, (1): 16-22 doi: 10.3969/j.issn.1006-7493.2008.01.002
Wang Dezi, Xie Lei. Magma Mingling: Evidence from Enclaves[J]. Geological Journal of China Universities, 2008, (1): 16-22. doi: 10.3969/j.issn.1006-7493.2008.01.002
[16] 王新雨, 王书来, 吴锦荣, 等. 青海省牛苦头铅锌矿床成矿时代研究: 来自成矿岩体年代学和黄铁矿Re–Os地球化学证据[J]. 西北地质, 2023, 56(6): 71−81.
WANG Xinyu, WANG Shulai, WU Jinrong, et al. Mineralization Age and Ore forming–Source of Niukutou Pb–Zn Deposit, Qinghai: Evidence from Geochronology of Ore–forming Rock Bodies and Re–Os Geochemistry of Pyrite[J]. Northwestern Geology, 2023, 56(6): 71−81.
[17] 王增振, 陈宣华, 邵兆刚, 等. 甘肃龙首山-合黎山晚志留世-早泥盆世花岗岩类的成因及其对阿拉善地块西南缘早古生代构造演化的约束[J]. 地质学报, 2020, 94(8): 2243-2257 doi: 10.3969/j.issn.0001-5717.2020.08.006
Wang Zengzhen, Chen Xuanhua, Shao Zhaogang, et al. Petrogenesis of the Late Silurian-Early Devonian granites in the Longshoushan-Helishan area, Gansu Province, and its tectonic implications for the Early Paleozoic evolution of the southwestern Alxa Block[J]. Acta Geologica Sinica, 2020, 94(8): 2243-2257. doi: 10.3969/j.issn.0001-5717.2020.08.006
[18] 王钊飞, 隋清霖, 贺永康. 西昆仑沙子沟铜矿区花岗闪长岩年代学地球化学及Hf同位素特征. 西北地质, 2019, 52(3): 90-109
Wang Zhaofei, Sui Qinglin, He Yongkang. Geochronology, Geochemistry and Hf Isotopic Com positions of the Granodiorite in the Shazigou Copper Deposit, Vest Kunlun[J]. Northwestern Geology, 2019, 52(3): 90-109.
[19] 王秉璋, 潘彤, 任海东, 等. 东昆仑祁漫塔格寒武纪岛弧: 来自拉陵高里河地区玻安岩型高镁安山岩/闪长岩锆石U-Pb年代学、地球化学和Hf同位素证据[J]. 地学前缘(中国地质大学(北京);北京大学), 2021, 28(1): 318-333
Wang Bingzhang, Pantong, Ren Haidong, et al. Cambrian Qimantagh island arc in the East Kunlun orogeny: Evidences from zircon U-Pb ages, litho geochemistry and Hf isotopes of high-Mg andesite/diorite from the Lalinggaolihe area[J]. Earth Science Frontiers, 2021, 28(1): 318-333.
[20] 王承花, 龙首山成矿带成矿规律及找矿方向[J]. 甘肃科技, 2010, 26(10): 39-44
Wang Chenghua. Metallogenic Regularity and Prospecting Direction of Longshou Mountain Metallogenic Belt[J]. Gansu Science and Technology, 2010, 26(10): 39-44.
[21] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220 doi: 10.3969/j.issn.1000-0569.2007.02.001
Wu Fuyuan, Li Xianhua, Zheng Yongfei, et al. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 2007, 23(2): 185-220. doi: 10.3969/j.issn.1000-0569.2007.02.001
[22] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报. 2004, 49(16): 1589-1604
Wu Yuanbao, Zheng Yongfei. Study on the mineralogy of Zircon and its constraints on the interpretation of U-Pb age[J]. Chinese Science Bulletin. 2004, 49(16): 1589-1604.
[23] 夏林圻, 徐学义, 夏祖春, 等. 天山石炭纪碰撞后裂谷火山作用[J]. 地质学报, 2003, (3): 358 doi: 10.3321/j.issn:0001-5717.2003.03.018
XIA Linqi, XU Xueyi, XIA Zuchun, et al. Volcanism of rift valley after Carboniferous collision in Tianshan Mountains [J]. Acta Geologica Sinica, 2003, (3): 358. doi: 10.3321/j.issn:0001-5717.2003.03.018
[24] 徐克勤, 胡受奚, 孙明志, 等. 华南两个成因系列花岗岩类及其成矿特征[J]. 桂林工学院学报, 1982, (1): 1-10
Xu Keqin, Hu Shouxi, Su Mingzhi, et al. On the Two Genetic Series of Granites in South China and their Metallogenetic Characteritics[J]. Journal of Guilin Institute of Technology, 1982, (1): 1-10.
[25] 袁洪林, 高山, 罗彦, 等. Lu-Hf年代学研究—以大别榴辉岩为例[J]. 岩石学报, 2007, 23(02): 233-239 doi: 10.3969/j.issn.1000-0569.2007.02.004
Yuan Honglin, Gao Shan, LuoYan, et al. Study of Lu-Hf Geochronology: a case study of eclogite from DaBie UHP Belt[J]. Acta Petrologica Sinica, 2007, 23(02): 233-239. doi: 10.3969/j.issn.1000-0569.2007.02.004
[26] 张甲民, 赵如意, 王刚, 等. 甘肃龙首山芨岭铀矿区A型似斑状花岗岩地质特征及其地质意义[J]. 矿物岩石地球化学报, 2017, (05): 121-131
Zhang Jiamin, Zhao Ruyi, Wang Gang, et al. The Geological Characteristics and Significances of A-Type Porphyritic Granite in the Jiling Uranium Deposit in the Longshou Mountains, Gansu Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, (05): 121-131.
[27] 张建军, 王涛, 张招崇, 等. 华北地块北缘西段巴音诺尔公-狼山地区牙马图岩体的岩浆混合成因[J]. 地质论评, 2012, 58(1): 53-66 doi: 10.3969/j.issn.0371-5736.2012.01.005
Zhang Jianjun, Wang Tao, Zhang Zhaochong, et al. Magma Mixing Origin of Yamatu Granite in Nuoergong—Langshan Area, Western Part of the Northern Margin of North China Craton: Petrological and Geochemical Evidences[J]. Geological Review, 2012, 58(1): 53-66. doi: 10.3969/j.issn.0371-5736.2012.01.005
[28] 张照伟, 谭文娟, 杜辉, 等. 金川岩浆镍钴硫化物矿床深部找矿勘查技术研究[J]. 西北地质, 2023, 56(6): 242−253.
ZHANG Zhaowei, TAN Wenjuan, DU Hui, et al. Study on Exploration Techniques of Deep Ore Prospecting in Jinchuan Magmatic Co–Ni Sulfide Deposit, Northwest China[J]. Northwestern Geology, 2023, 56(6): 242−253.
[29] Alther R, Holl A, Hegner E, et al. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany)[R]. Lithos, 2000, 50(1): 51-73.
[30] Batchelor, R. A, Bowden P. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters[J]. Chemical Geology, 1985.48(1-4): 43-55. doi: 10.1016/0009-2541(85)90034-8
[31] Chappell B W, White A J R. I-and S-type granites in the Lachlan fold belt[J]. Royal Society of Edinburgh Transaction, 1992, 83: 1-26.
[32] Harris N B W, Pearce J A, Tindle A G. Geochemical Characteristics of Collision-zone Magmatism[J]. Geological Society, London, Special Publications, 1986, 19(1): 67-81. doi: 10.1144/GSL.SP.1986.019.01.04
[33] Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology. 2000, 18(4): 423-439.
[34] Jiang Yaohui, Jiang Shaoyong, Ling Hongfei, et al. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: Geochemical and Sr-Nd-Pb-Hf isotopic constraints[J]. Earth andPlanetary Science Letters, 2006, 241(3): 617-633.
[35] LASSITERJ C, Depaolo D J. Plume/lithosphere interaction in the generation of continental and oceanic flood ba-salts: Chemical and isotopic constraints. In: Mahoney J, ed. Large Igneous Provinces: Continental Ocanic and Planetary Flood Volcanism. Geophysical Monograph 100 [M]. Washington DC: American Geophysical Union Press, 1997, 335-355.
[36] R. W. Le Maitre, A new generalised petrological mixing model[J]. Contributions to Mineralogy and Petrology, 1979,71(2): 133-137.
[37] Ludwig, K R. User’s Manual for Isoplot 3.0: A Geo-chronological Toolkit for Microsoft Excel. Berkeley Geo-chronology Center Special Publication, Berkeley. 2003
[38] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of American Bulletin. 1989, 10(5): 635-643.
[39] Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 1976.58(1): 63-81.
[40] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956
[41] Rapp, R. P. , Watson, E. B. , Dehydration Melting of Me-tabasalt at 8-32 Kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology. 1995.36(4): 891-931.
[42] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J (eds.). Magmatism in the Ocean Basins. Geological Society of London Special Publication, 1989, 42(1): 313−345.
[43] Streckeisen A L. Classification of the Common Igne-ous Rocks by Means of Their Chemical Composition: A Provisional Attempt. Neues Jahrbuch für Mineralogie-Monatshefte. 1976, 1: 1-15.
[44] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell, 1985, 1-312.
[45] Whalen J B, Currie K L, Chappell B W. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95: 407-419. doi: 10.1007/BF00402202
[46] Wolf M B, London D. Apatite dissolution into peraluminous haplogranitic melts: an experimental study of solubilities and mechanism[J]. Geochimica et Cosmochimica Acta, 1994.58: 4127-4145. doi: 10.1016/0016-7037(94)90269-0
-