Analysis on the Geomorphic Type Characteristics and Genetic Evolution of Danxia in Tongde Shizang, Qinghai
-
摘要:
青海同德石藏地区发育黄河流域最上游连片分布面积最大、形态特征典型的丹霞地貌景观。基于实地调查和综合分析,按单体地貌形态对石藏丹霞地貌进行分类,包括7种丹霞正地貌和5种丹霞负地貌,类型多样、景观独特。石藏丹霞地貌的成景地层为古近纪西宁组紫红色巨厚层状砂砾岩,受地质构造、物理化学风化、机械侵蚀和重力等内外营力作用塑造形成,并经历了红层堆积、红层盆地构造抬升、丹霞地貌发育幼年期和青年期4个形成演化阶段。从地质学角度揭示出丹霞地貌的成因演化过程,对进一步认识中国西部地区丹霞地貌发育以及普及地球科学知识,保护和利用地学旅游资源具有理论和实际意义。
Abstract:The Danxia landform landscape with the largest contiguous area and typical morphological characteristics in the upper reaches of the Yellow River Basin is developed in Shizang area of Tongde, Qinghai Province. Based on the field investigation and comprehensive analysis, the Shizang Danxia landform was classified according to the individual landform form, including 7 Danxia positive landform and 5 Danxia negative landform, with diverse types and unique landscape. The Shizang Danxia landform in the formation of paleogene Xining group purple thick layer glutenite, affected by geological structure, physical and chemical weathering, erosion, and gravity machinery, such as the inside and outside sales force shape formation, and go through the red layer accumulation, red basin tectonic uplift, danxia landforms of infancy and adolescence formed four evolutionary stages. It is of theoretical and practical significance to further understand the development of Danxia landform in western China, popularize the knowledge of earth science, and protect and utilize the geoscience tourism resources.
-
Key words:
- Danxia landform /
- type characteristics /
- genetic evolution /
- Qinghai Tongde
-
-
图 4 研究区西宁组实测地层剖面图(据祁生胜等,2008修改)
Figure 4.
图 6 石藏丹霞地貌形成过程示意图(据彭华,2000修改)
Figure 6.
表 1 石藏丹霞地貌类型及特征
Table 1. The types and characteristics of Danxia landform in Shizang
类型 指标依据 特征 分布 正地貌 丹霞崖壁 坡度>60°,高度>10 m的崖坡 多直立坡和陡崖坡,流水侵蚀崖壁凹凸不平,崩塌崖壁直立光平;壁上多顺层凹槽和洞穴 坚硬岩石地段的大部分边坡,山缘或沟谷两侧 丹霞石墙 长度大于2倍宽度,高度大于宽度 顺构造线方向延伸,呈墙状山块,低矮者可称石梁 一般和石峰相伴产出,发育受断裂、裂隙控制,常沿构造线延伸 丹霞石柱 孤立石柱,一般高度大于直径 多呈方形或圆形,低矮者(高度小于直径)可称石墩 垂直断裂切割的地段,一般产出于丹霞崖壁边缘 丹霞石峰 陡崖坡构成的锥状山峰 由陡坡围限的锥状山块,有尖顶、平顶和圆顶等差别 坚硬岩石地段或流水侵蚀作用强烈区 丹霞低山 局部陡崖,多为30°~60°的陡坡山峰 多以陡坡或陡缓坡相间构成石峰或山梁,局部存在陡坡崖 岩性稍软地段 丹霞丘陵 以基岩陡坡为主,大部分坡度在55°以下 无连续陡崖坡,缓坡上基岩裸露 抬升后长期稳定的侵蚀区或软岩地段 崩塌堆和崩塌巨石 陡崖下不规则锥状崩积体和巨石块 块状崩塌堆积,叠置洞穴;石块大小不同,单块巨石大可至几百立方米 流水侵蚀作用强烈区,陡崖坡的下部 负地貌 顺层凹槽 顺软岩层形成的崖壁凹槽,宽∶高≥10∶1,深度小于槽口高度 岩壁上出露的软岩层风化或侵蚀形成凹槽,连续或不连续 多见于丹霞崖壁,顺软岩层
发育丹霞洞穴 深度大于外口最小尺度的凹穴 大小不等,形态各异,如顺层洞穴、水平洞穴、蜂窝状洞穴等;纵深方向多顺层延伸 崖壁软岩出露地带或流水侧蚀部位 丹霞穿洞 蚀穿山块的通透洞穴 洞高小于洞顶岩层厚度的称为穿洞(石窗);洞高大于洞顶岩层厚度的跨谷穿洞为天生桥,否则为石拱 一般产出于石墙中软岩地段,山块顶部蚀穿形成石窗,底部形成穿洞 竖向洞穴 竖向发展的洞穴,高度大于宽度 由垂直水流侵蚀形成,不一定有平展的洞顶 垂直节理发育区和流水侵蚀作用强烈区 沟 谷 线谷 谷深>3 m并大于5倍谷宽, 谷宽<1 m 仅容1人通过或人不能通过,谷壁直立或平行,俗称“一线天” 主要顺构造线发育,为流水侵蚀作用强烈区 巷谷 谷深>3 m并大于5倍谷宽,谷宽1~10 m 两壁呈“V”型或“U型”,垂直或同斜,谷底较平坦 峡谷 谷深大于谷宽,谷底宽度>10 m的山谷 两侧谷壁以陡坡为主,谷地可见小型边滩,谷底平坦 -
[1] 保广普, 刘春娥, 黄广文. 青海丹霞地貌的分布、特征及演化[J]. 西北地质, 2019, 52(3): 199-208 doi: 10.19751/j.cnki.61-1149/p.2019.03.018
BAO Guangpu, LIU Chun'e, HUANG Guangwen. Distribution, Characteristics and Evolution of Danxia Landform in Qinghai[J]. Northwestern Geology, 2019, 52(3): 199-208. doi: 10.19751/j.cnki.61-1149/p.2019.03.018
[2] 蔡厚维. 青藏高原的现今地壳活动性[J]. 西北地质, 2009, 42(1): 34-42 doi: 10.3969/j.issn.1009-6248.2009.01.002
CAI Houwei. Present Crustal Activity Tibetan Plateau[J]. Northwestern Geology, 2009, 42(1): 34-42. doi: 10.3969/j.issn.1009-6248.2009.01.002
[3] 郭福生, 陈留勤, 严兆彬, 等. 丹霞地貌定义、分类及丹霞作用研究[J]. 地质学报, 2020, 94(2): 361-374.
GUO Fusheng, CHEN Liuqin, YAN Zhaobin, et al. Definition, classification, and danxianization of Danxia landscapes[J]. Acta Geologica Sinica, 2020, 94(2). 361-374.
[4] 黄进, 陈致均, 齐德利. 中国丹霞地貌分布(上)[J]. 山地学报, 2015, 33(4): 385-396 doi: 10.16089/j.cnki.1008-2786.000049
HUANG Jin, CHEN Zhijun, QI Deli. Study on Distribution of Danxia Landform in China(first)[J]. Mountain Research, 2015, 33(4): 385-396. doi: 10.16089/j.cnki.1008-2786.000049
[5] 刘星星, 宋磊, 金彦香, 等. 青藏高原全新世风沙活动历史与环境变化[J]. 干旱区资源与环境, 2013, 27(6): 41-47 doi: 10.13448/j.cnki.jalre.2013.06.036
LIU Xingxing, SONG Lei, JIN Yanxiang, et al. History of aeolian deposits in Tibetan Plateau and climate change over Holocene[J]. Journal of Arid Land Resources and Environment, 2013, 27(6): 41-47. doi: 10.13448/j.cnki.jalre.2013.06.036
[6] 刘志杰, 孙永军. 青藏高原隆升与黄河形成演化[J]. 地理与地理信息科学, 2007, 23(1): 79-82+91 doi: 10.3969/j.issn.1672-0504.2007.01.019
LIU Zhijie, SUN Yongjun. Uplift of the Qinghai-Tibet Plateau and Formation, Evolution of the Yellow River[J]. Geography and Geo-Information Science, 2007, 23(1): 79-82+91. doi: 10.3969/j.issn.1672-0504.2007.01.019
[7] 彭华. 中国丹霞地貌研究进展[J]. 地理科学, 2000, 20(3): 203-211 doi: 10.3969/j.issn.1000-0690.2000.03.002
PENG Hua. A Survey of the Danxia Landform Research in China[J]. Scientia Geographica Sinica, 2000, 20(3): 203-211. doi: 10.3969/j.issn.1000-0690.2000.03.002
[8] 彭华. 丹霞地貌分类系统研究[J]. 经济地理, 2002, 22(S1): 28-35
PENG Hua. The Research on Classification System of Danxia Landform[J]. Economic Geography, 2002, 22(S1): 28-35.
[9] 彭华. 丹霞地貌学[M]. 北京: 科学出版社, 2020
PENG Hua. Danxia geomorphology[M]. Beijing: Science Press, 2020.
[10] 祁生胜, 马志康, 安守文, 等. 1∶25万河南蒙古族自治县幅(I47C002004)区域地质调查报告[R]. 青海省地质调查院, 2008
[11] 祁生胜, 李五福, 于文杰, 等. 青海新一轮地质志修编报告[R]. 青海省地质调查院, 2018
[12] 施雅风, 李吉均, 李炳元. 青藏高原晚新生代隆升与环境变化[M]. 广州: 广东科技出版社, 1998
SHI Yafeng, LI Jijun, LI Bingyuan. Uplift and environmental changes of Qinghai-Xizang(Tibetan) plateau in the Late Cenozoic[M]. Guangzhou: Guangdong Science and Technology Press, 1998.
[13] 王国灿, 曹凯, 张克信, 等. 青藏高原新生代构造隆升阶段的时空格局[J]. 中国科学: 地球科学, 2011, 41(3): 332-349
WANG Guocan, CAO Kai, ZHANG Kexin, et al. Spatio-temporal framework of tectonic uplift stages of the Tibetan Plateau in Cenozoic[J]. Science China Earth Sciences, 2011, 41(3): 332-349.
[14] 肖景义, 陈建强, 张璞. 青海地质旅游发展探讨[J]. 西北地质, 2007, 40(3): 111-117 doi: 10.3969/j.issn.1009-6248.2007.03.013
XIAO Jingyi, CHEN Jianqiang, ZHANG Pu. Discussion on Development of Geo-tourism in Qinghai Province[J]. Northwestern Geology, 2007, 40(3): 111-117. doi: 10.3969/j.issn.1009-6248.2007.03.013
[15] 张克信, 王国灿, 陈奋宁, 等. 青藏高原古近纪—新近纪隆升与沉积盆地分布耦合[J]. 地球科学(中国地质大学学报), 2007, 32(5): 583-597
ZHANG Kexin, WANG Guocan, CHEN Fenning, et al. Coupling between the Uplift of Qinghai-Tibet Plateau and Distribution of Basins of Paleogene-Neogene[J]. Earth Science-Journal of China University of Geosciences, 2007, 32(5): 583-597.
[16] 张克信, 王国灿, 骆满生, 等. 青藏高原新生代构造岩相古地理演化及其对构造隆升的响应[J]. 地球科学(中国地质大学学报), 2010, 35(5): 697-712 doi: 10.3799/dqkx.2010.085
ZHANG Kexin, WANG Guocan, LUO Mansheng, et al. Evolution of Tectonic Lithofacies Paleogeography of Cenozoic of Qinghai Tibet Plateau and Its Response to Uplift of the Plateau[J]. Earth Science-Journal of China University of Geosciences, 2010, 35(5): 697-712. doi: 10.3799/dqkx.2010.085
[17] 张克信, 王国灿, 洪汉烈, 等. 青藏高原新生代岩石剥露、沉积与气候演化及其对构造隆升的响应[A]. 中国古生物学会学术年会[C], 2011: 232−234
[18] 张克信, 王国灿, 洪汉烈, 等. 青藏高原新生代隆升研究现状[J]. 地质通报, 2013, 32(1): 1-18 doi: 10.3969/j.issn.1671-2552.2013.01.001
ZHANG Kexin, WANG Guocan, HONG Hanlie, et al. The study of the Cenozoic uplift in the Tibetan Plateau[J]. Geological Bulletin of China, 2013, 32(1): 1-18. doi: 10.3969/j.issn.1671-2552.2013.01.001
-