富水砂土隧道注浆加固效果评价研究:以郑州地铁7号线砂土隧道为例

钟宏伟, 秦鹏飞, 卢再光, 张颖. 2025. 富水砂土隧道注浆加固效果评价研究:以郑州地铁7号线砂土隧道为例. 西北地质, 58(1): 315-322. doi: 10.12401/j.nwg.2023172
引用本文: 钟宏伟, 秦鹏飞, 卢再光, 张颖. 2025. 富水砂土隧道注浆加固效果评价研究:以郑州地铁7号线砂土隧道为例. 西北地质, 58(1): 315-322. doi: 10.12401/j.nwg.2023172
ZHONG Hongwei, QIN Pengfei, LU Zaiguang, ZHANG Ying. 2025. Evaluation on Grouting Reinforcement Effect of Water-rich Sand Tunnel:Take the Sandy Tunnel of Zhengzhou Metro Line 7 as An Example. Northwestern Geology, 58(1): 315-322. doi: 10.12401/j.nwg.2023172
Citation: ZHONG Hongwei, QIN Pengfei, LU Zaiguang, ZHANG Ying. 2025. Evaluation on Grouting Reinforcement Effect of Water-rich Sand Tunnel:Take the Sandy Tunnel of Zhengzhou Metro Line 7 as An Example. Northwestern Geology, 58(1): 315-322. doi: 10.12401/j.nwg.2023172

富水砂土隧道注浆加固效果评价研究:以郑州地铁7号线砂土隧道为例

  • 基金项目: 重庆交通大学水利水运工程教育部重点实验室开放基金(SLK2023B07),河南省高等学校重点科研项目“砂砾地层水泥注浆浆液扩散规律与加固机理研究”(24A560011),河南省水利厅科技攻关项目(GG 202345),黄河科技学院博士科研启动基金项目(02032695)联合资助。
详细信息
    作者简介: 钟宏伟(1977−),男,硕士,讲师,从事工程地质方面的研究。E–mail:735036835@qq.com
    通讯作者: 秦鹏飞(1984−),男,博士,副教授,从事注浆技术方面的研究。E–mail:929163723@qq.com。
  • 中图分类号: P642.2

Evaluation on Grouting Reinforcement Effect of Water-rich Sand Tunnel:Take the Sandy Tunnel of Zhengzhou Metro Line 7 as An Example

More Information
  • 在地质环境日趋复杂和恶劣的工程背景下,注浆加固的质量要求越来越高,建立科学合理的注浆效果评价体系,具有重要的理论意义和研究价值。针对注浆量核算法、检查孔分析法、P-Q-t曲线法及地球物理探测法等工程中应用较广泛的注浆效果检测方法,通过抽取一、二级影响因素确立层次评价体系,并结合专家意见与实际工况构建了注浆效果评价数学模型。然后基于模糊数学的基本原理,将权向量作为评价因素的权重进行量化,通过矩阵运算实现了模糊现象的数学表达,完成了砂土隧道注浆效果的准确评价。最后结合郑州地铁7号线砂土隧道,通过模糊评价综合分析,认为注浆效果等级达到良好等级(B)。隧道实际开挖期间,未出现任何形式的水文、地质干扰,表明评价方法科学高效,可为其他工程施工提供指导或参考。

  • 加载中
  • 图 1  开挖、治理中的砂土隧道照片

    Figure 1. 

    图 2  P-t曲线特征

    Figure 2. 

    图 3  Q-t曲线特征

    Figure 3. 

    图 4  Zond地质雷达现场探测

    Figure 4. 

    图 5  雷达探测结果分析

    Figure 5. 

    图 6  注浆孔横剖面布置(a)和纵剖面布置图(b)

    Figure 6. 

    表 1  单孔注浆量统计(m3

    Table 1.  Single hole grouting quantity statistics(m3

    A1-A5 A6-A10 A31-A35 A36-A40 A66-A70 A91-A95 A96-A100 A115-A120 A135-A140 A135-A140
    27.4 25.9 41.1 39.1 29.9 30.9 29.1 27.4 28.4 27.9
    31.7 33.7 35.7 37.7 34.8 35.4 34.8 33.3 33.8 30.3
    37.6 28.4 35.2 27.9 40.1 39.1 40.3 29.1 41.2 29.3
    35.7 33.1 36.1 33.1 32.8 34.4 30.8 37.8 30.7 30.8
    35.7 37.9 34.8 35.8 38.1 37.1 39.1 31.1 34.6 38.5
    下载: 导出CSV

    表 2  检查孔涌水量统计分析

    Table 2.  Statistical analysis of water inflow from inspection hole

    号别 孔位深度(m) 单点涌水量(m3/h) 平均涌水量(L/(min·m)) 号别 孔位深度(m) 单点涌水量(m3/h) 平均涌水量(L/(min·m))
    D1 26 1.10 0.90 D11 27 0.90 0.30
    D3 25 0.20 0.08 D13 25 0.10 0.02
    D5 27 0 0 D15 26 0 0
    D9 28 0.80 0.10 D17 27 0 0
    下载: 导出CSV

    表 3  单因素模糊评价矩阵

    Table 3.  Single factor fuzzy evaluation matrix

    评价指标 因素权重(A/B/C/D) 评价指标 因素权重(A/B/C/D)
    总注浆量 0.25 0.50 0.15 0.10 P-t 特征 0.50 0.25 0.15 0.10
    地层契合度 0.20 0.60 0.15 0.05 Q-t 特征 0.35 0.25 0.30 0.10
    涌水量 0.10 0.50 0.30 0.10 地质雷达法 0.30 0.20 0.40 0.10
    取心率 0.15 0.45 0.30 0.10 TEM 法 0.05 0.35 0.50 0.10
    下载: 导出CSV

    表 4  模糊评价等级划分

    Table 4.  Fuzzy evaluation level

    等级 指标取值 工程表现 等级 指标取值 工程表现
    A0<T≤0.1注浆加固完全达到预期设想 C0.3<T≤0.6需做二次处理以预防工程事故
    B0.1<T≤0.3发生工程事故的可能性很小D0.6<T≤ 1注浆失败,需重新设定预案
    下载: 导出CSV
  • [1]

    陈湘生, 付艳斌, 吕桂阳, 等. 基于小孔扩张弹塑性理论的注浆起始劈裂压力研究[J]. 中国公路学报, 2020, 33(12): 154-163

    CHEN Xiangsheng, FU Yanbin, LV Guiyang, et al. Study on Initial Fracture Pressure of Grouting Based on the Elastic-plastic Theory of Cavity Expansion[J]. China Journal of Highway and Transport, 2020, 33(12): 154-163.

    [2]

    程少振, 陈铁林, 郭玮卿. 土体劈裂注浆过程的数值模拟及浆脉形态影响因素分析[J]. 岩土工程学报, 2019, 41(3): 1667-1676 doi: 10.11779/CJGE201903010

    CHENG Shaozhen, CHEN Tielin, GUO Weiqing. Numerical Simulation of Fracture Grouting and Analysis of Influencing Factors of Grout Vein Morphology[J]. Journal of Geotechnical Engineering, 2019, 41(3): 1667-1676. doi: 10.11779/CJGE201903010

    [3]

    邓聚龙. 灰色系统基本方法(第5版)[M]. 武汉: 华中科技大学出版社, 2016

    DENG Julong. Basic methods of grey system(5th ed.)[M]. Wuhan: Huazhong University of Science and Technology Press, 2016.

    [4]

    贾杰, 覃礼貌, 于振涛, 等. 某艰险山区铁路隧道岩溶发育特征及涌突水危险性评价[J]. 西北地质, 2023, 56(3): 258-267

    JIA Jie, QIN Limao, YU Zhentao, et al. Karst Development Characteristics and Water Inrush Risk Assessment of Railway Tunnel in a Difficult and Dangerous Mountain Area[J]. Northwestern Geology, 2023, 56(3): 258-267.

    [5]

    李培楠, 石来, 李晓军, 等. 盾构隧道同步注浆纵环向整体扩散理论模型[J]. 同济大学学报(自然科学版), 2020, 48(5): 629-637 doi: 10.11908/j.issn.0253-374x.19257

    LI Peinan, SHI Lai, LI Xiaojun, et al. Theoretical Model of Synchronous Grouting Longitudinal Circumferential Integrated Diffusion of Shield Tunnels[J]. Journal of Tongji University(Natural Science), 2020, 48(5): 629-637. doi: 10.11908/j.issn.0253-374x.19257

    [6]

    李术才, 薛翊国, 苏茂鑫, 等. 青岛胶州湾海底隧道涌水断层注浆效果综合检验方法研究[J]. 岩石力学与工程学报, 2019, 38(7): 1382-1388

    LI Shucai, XUE Yiguo, SU Maoxin, et al. Study of Comprehensive Test Method for Grouting Effect of Water Filling Fault in Qingdao KiaoChow Bay Subsea Tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1382-1388.

    [7]

    王学平, 李稳哲. 地质构造对鄂尔多斯盆地南缘岩溶地下水的控制作用[J]. 西北地质, 2010, 43(03): 106–112 doi: 10.3969/j.issn.1009-6248.2010.03.014

    WANG Xueping, LI Wenzhe. Geological Tectonics Control on the Karstic Water in the South Margin of the Ordos Basin[J]. Northwestern Geology, 2010, 43(03): 106-112. doi: 10.3969/j.issn.1009-6248.2010.03.014

    [8]

    魏久传, 韩承豪, 张伟杰, 等. 基于步进式算法的裂隙注浆扩散机制研究[J]. 岩土力学, 2019, 40(3): 913-919

    WEI Jiuchuan, HAN Chenghao, ZHANG Weijie, et al. Mechanism of fissure grouting based on step-wise calculation method[J]. Rock and Soil Mechanics, 2019, 40(3): 913-919.

    [9]

    张连震, 张庆松, 刘人太, 等. 基于浆液-岩体耦合效应的微裂隙岩体注浆理论研究[J]. 岩土工程学报, 2018, 40(11): 2003-2011 doi: 10.11779/CJGE201811006

    ZHANG Lian-zhen, ZHANG Qing-song, LIU Ren-tai, et al. Grouting mechanism in fractured rock considering slurry-rock stress coupling effects [J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2003-2011. doi: 10.11779/CJGE201811006

    [10]

    张庆松, 王洪波, 刘人太, 等. 考虑浆液扩散路径的多孔介质渗透注浆机理研究[J]. 岩土工程学报, 2018, 40(5): 918-924 doi: 10.11779/CJGE201805017

    ZHANG Qingsong, WANG Hongbo, LIU Rentai, et al. Infiltration grouting mechanism of porous media considering diffusion paths of grout[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 918-924. doi: 10.11779/CJGE201805017

    [11]

    钟登华, 樊贵超, 任炳昱, 等. 基于分形理论的坝基裂隙岩体注灰量与导水率关系研究[J]. 水利学报, 2017, 48(5): 576-587

    ZHONG Denghua, FAN Guichao, REN Bingyu, et al. Research on the relationship between cement take and transmissivity of fractured rocks under dam foundation based on fractal theory[J]. Journal of Hydraulic Engineering, 2017, 48(5): 576-587.

    [12]

    Ballesteros D, Giralt S, Garcia, et al. Quaternary regional evolution based on karst cave geomorphology in Picos de Europa[J]. Geomorphology, 2021, 336: 133-151.

    [13]

    FENG K, HE C, QIU Y, et al. Full-scale tests on bending behavior of segmental joints for large underwater shield tunnels[J]. Tunnelling and Underground Space Technology, 2018, 75(2): 100-116.

    [14]

    LU Yinlong, HE Mengqi, LI Wenshuai, et al. Micromechanical mechanisms of grouting reinforced in rock joints and microstructure optimization of grout-rock bonding interfaces[J]. Journal of Rock Mechanics and Engineering, 2020, 39(9): 1808-1818.

    [15]

    PARK D, OH J. Permeation grouting for remediation of dam cores[J]. Engineering Geology, 2018, 233: 63-75. doi: 10.1016/j.enggeo.2017.12.011

    [16]

    SHI C, CAO C, LEI M, et al. Effects of lateral unloading on the mechanical and deformation performance of shield tunnel segment joints[J]. Tunnelling and Underground Space Technology, 2016, 51(1): 175-188.

    [17]

    WU H, SHEN S, CHEN R, et al. Three-dimensional numerical modelling on localised leakage in segmental lining of shield tunnels[J]. Computers and Geotechnics, 2020, 122: 103549. doi: 10.1016/j.compgeo.2020.103549

    [18]

    XIN C L, WANG Z Z, YU J. The evaluation on shock absorption performance of buffer layer around the cross section of tunnel lining[J]. Soil Dynamics and Earthquake Engineering, 2020, 131: 106032 doi: 10.1016/j.soildyn.2020.106032

    [19]

    YAN Fugen, Zou debing, Min Zhenghui, et al. Effect Analysis of karst curtain grouting based on fuzzy comprehensive evaluation[J]. Yangtze River Report, 2023, 54(5): 182-188.

    [20]

    YAN G, SHEN Y, GAO B, et al. Damage evolution of tunnel lining with steel reinforced rubber joints under normal faulting: an experimental and numerical investigation[J]. Tunnelling and Underground Space Technology, 2020, 97: 103223. doi: 10.1016/j.tust.2019.103223

  • 加载中

(6)

(4)

计量
  • 文章访问数:  125
  • PDF下载数:  36
  • 施引文献:  0
出版历程
收稿日期:  2023-01-10
修回日期:  2023-08-26
录用日期:  2023-08-30
刊出日期:  2025-02-20

目录