多年冻土InSAR地表变形监测与土壤水热过程研究

褚洪义, 杨博, 魏东琦, 李汶洪, 黄兆欢, 张茗爽, 乔冈. 2024. 多年冻土InSAR地表变形监测与土壤水热过程研究. 西北地质, 57(6): 244-254. doi: 10.12401/j.nwg.2024001
引用本文: 褚洪义, 杨博, 魏东琦, 李汶洪, 黄兆欢, 张茗爽, 乔冈. 2024. 多年冻土InSAR地表变形监测与土壤水热过程研究. 西北地质, 57(6): 244-254. doi: 10.12401/j.nwg.2024001
CHU Hongyi, YANG Bo, WEI Dongqi, LI Wenhong, HUANG Zhaohuan, ZHANG Mingshuang, QIAO Gang. 2024. Research on InSAR Surface Deformation and Soil Hydrothermal Process in Permafrost. Northwestern Geology, 57(6): 244-254. doi: 10.12401/j.nwg.2024001
Citation: CHU Hongyi, YANG Bo, WEI Dongqi, LI Wenhong, HUANG Zhaohuan, ZHANG Mingshuang, QIAO Gang. 2024. Research on InSAR Surface Deformation and Soil Hydrothermal Process in Permafrost. Northwestern Geology, 57(6): 244-254. doi: 10.12401/j.nwg.2024001

多年冻土InSAR地表变形监测与土壤水热过程研究

  • 基金项目: 中国地质调查局项目“地质调查智能技术与通用工具研发推广(西安地调中心)”(DD20230605),“云平台地质调查西安地调中心节点运行维护与网络安全保障”(DD20230708),中央科研院所基本科研业务费项目“基于InSAR-GRACE技术的华北平原典型城市地下水与地面沉降耦合分析”(KY202302)和陕西省重点研发计划“黄河流域(陕西段)生态安全格局构建、评价与风险管控关键技术研究”(2021ZDLSF05-01)联合资助。
详细信息
    作者简介: 褚洪义(1995−),男,硕士,研究实习员,主要从事InSAR理论与应用研究。E–mail:chuhongyi@mail.cgs.gov.cn
  • 中图分类号: P237

Research on InSAR Surface Deformation and Soil Hydrothermal Process in Permafrost

  • 地表变形是反映活动层冻融过程的重要特征。为研究地表变形与活动层水热过程的相关性,采用SBAS-InSAR技术对祁连山地区野牛沟多年冻土区近5a的地表变形进行长期连续监测,并基于野外观测数据研究了地表变形与土壤水热过程的关系。结果表明,冻融过程与水力侵蚀作用引起的地表变形最为显著,地表变形表现出明显的季节性特征。冻融过程引起的地表累积变形较小,年际冻胀、融沉幅度约为10~20 mm;水力侵蚀引起的地表累积变形较大,年际地表变形幅度超过50 mm。野外观测数据表明活动层土壤温度具有轻微的下降趋势,负温等温线下探深度增加、历时加长,冻结锋面交汇日逐渐提前。地表变形与土壤温度、土壤湿度具有较好的相关性,在土壤水分富集区相关性更强,相关系数分别为−0.522、−0.415(P<0.001)。土壤水分富集区土壤含水量的变化对地表冻胀、融沉幅度变化的影响也更显著,两者具有良好的线性关系。笔者定量描述了活动层地表变形与土壤水热过程的关系,对大范围活动层冻融参数的监测研究具有参考意义。

  • 加载中
  • 图 1  研究区位置图

    Figure 1. 

    图 2  干涉像对时空基线分布

    Figure 2. 

    图 3  野牛沟地表年均形变速率

    Figure 3. 

    图 4  A区域季节变形特征

    Figure 4. 

    图 5  PT1与PT2冻融过程地表变形-时间序列

    Figure 5. 

    图 6  河流侵蚀边坡变形分布

    Figure 6. 

    图 7  河流侵蚀边坡变形-时间序列

    Figure 7. 

    图 8  大沙龙站活动层土壤温度分层变化过程

    Figure 8. 

    图 9  形变与土壤温湿度(a)和土壤含水量(b)时间序列

    Figure 9. 

    图 10  −40 cm处土壤含水量极差与地表变形极差回归分析

    Figure 10. 

    图 11  大沙龙站活动层土壤含水量分层变化过程

    Figure 11. 

    表 1  地表形变与土壤温湿度相关系数

    Table 1.  Correlation coefficient between surface deformation with soil temperature and humidity, respectively

    深度(cm) 0 4 10 20 40 80 120 160
    土壤温度 −0.479 −0.455 −0.493 −0.513 −0.522 −0.517 −0.492 −0.471
    土壤含水量 / −0.293 −0.415 −0.396 −0.409 −0.240 −0.209 −0.186
    下载: 导出CSV
  • [1]

    陈玉兴, 江利明, 梁林林, 等. 基于Sentinel-1 SAR数据的黑河上游冻土形变时序InSAR监测[J]. 地球物理学报, 2019, 62(7): 2441−2454.

    CHEN Yuxing, JIANG Liming, LIANG Linlin, et al. Monitoring permafrost deformation in the upstream Heihe River, Qilian Mountain by using multi-temporal Sentinel-1 InSAR dataset[J]. Chinese Journal of Geophysics,2019,62(7):2441−2454.

    [2]

    杜冉, 彭小清, 金浩东, 等. 祁连山俄博岭地区热融洼地与冻胀草丘活动层融化深度差异性对比研究[J]. 冰川冻土, 2022, 44(1): 188−202.

    DU Ran, PENG Xiaoqing, JIN Haodong, et al. Comparative study on active layer depth differences between hummocks and thermokarst depressions in the Eboling area of the Qilian Mountains[J]. Journal of Glaciology and Geocryology,2022,44(1):188−202.

    [3]

    范鹏, 王硕, 张正加, 等. 高分辨率时序InSAR技术在青藏输电杆塔精细形变监测中的应用[J]. 测绘通报, 2021(3): 118−122.

    FAN Peng, WANG Shuo, ZHANG Zhengjia, et al. Deformation monitoring of Qinghai-Tibei transmission tower using high resolution time-series InSAR technology[J]. Bulletin of Surveying and Mapping,2021(3):118−122.

    [4]

    冯旻譞, 齐琦, 董英, 等. 利用Sentinel-1A数据监测大西安2019~2022年大西安地表形变[J]. 西北地质, 2023, 56(3): 178−185.

    FENG Minxuan, QI Qi, DONG Ying, et al. Monitoring Surface Deformation in Xi’an City from 2019 to 2022 Based on Sentinel-1A Data[J]. Northwestern Geology,2023,56(3):178−185.

    [5]

    郭怀军.祁连山及邻区第四纪地质与地貌研究[D].西安: 西北大学, 2017.

    GUO Huaijun.An investigation on Quaternary geology and geomorphology of Qilian Mountains and its adjacent areas[D].Xi’an:NorthWest University, 2017.

    [6]

    逯中香, 樊彦国, 李国胜. 利用时序InSAR技术监测青藏铁路沿线地表形变[J]. 测绘通报, 2022(3): 138−142+156.

    LU Zhongxiang, FAN Yanguo, LI Guosheng. Monitoring of surface deformation along the Qinghai-Tibet Railway with the time series InSAR technology[J]. Bulletin of surveying and mapping,2022(3):138−142+156.

    [7]

    马晶晶, 王佩, 邓钰婧, 等. 青海湖流域高寒草甸季节冻土土壤温湿变化特征[J]. 土壤, 2022, 54(3): 619−628.

    MA Jingjing, WANG Pei, DENG Yujing, et al. Characteristics of Seasonal Frozen Soil Temperature and Moisture Changes in Alpine Meadow in Qinghai Lake Watershed[J]. Soils,2022,54(3):619−628.

    [8]

    马素辉, 牟翠翠, 郭红, 等. 祁连山黑河上游多年冻土区不同植被类型土壤有机碳密度分布特征[J]. 冰川冻土, 2018, 40(3): 426−433.

    MA Suhui, MU Cuicui, GUO Hong, et al. Distribution features of permafrost organic carbon density on different vegetation types in the upper reaches of Heihe River, Qilian Mountains[J]. Journal of Glaciology and Geocryology,2018,40(3):426−433.

    [9]

    王庆锋, 金会军, 张廷军, 等. 祁连山区黑河上游高山多年冻土区活动层季节冻融过程及其影响因素[J]. 科学通报, 2016, 61(24): 2742−2756. doi: 10.1360/N972015-01237

    WANG Qingfeng, JIN Huijun, ZHANG Tingjun, et al. Active layer seasonal freeze-thaw processes and influencing factors in the alpine permafrost regions in the upper reaches of the Heihe River in Qilian Mountains[J]. Chinese Science Bulletin,2016,61(24):2742−2756. doi: 10.1360/N972015-01237

    [10]

    王燕燕, 于海洋. 九寨沟M_S7.0级地震三维同震形变场提取[J]. 测绘科学, 2019, 44(5): 8−13.

    WANG Yanyan, YU Haiyang. Extraction of 3D coseismic deformation field of Jiuzhaigou MS7.0 earthquake[J]. Science of Surveying and Mapping,2019,44(5):8−13.

    [11]

    王志伟, 岳广阳, 吴晓东. 青藏高原多年冻土区不同高寒草地类型地表形变特征[J]. 生态学报, 2021, 41(6): 2398−2407.

    WANG Zhiwei, YUE Guangyang, WU Xiaodong. Ground surface deformation characteristics of different alpine-grassland types in the permafrost zones of Qinghai-Tibet Plateau[J]. Acta Ecologica Sinica,2021,41(6):2398−2407.

    [12]

    吴吉春, 盛煜, 于晖, 等. 祁连山中东部的冻土特征(Ⅰ): 多年冻土分布[J]. 冰川冻土, 2007, 29(3): 418−425.

    WU Jichun, SHENG Yu, YU Hui, et al. Permafrost in the Middle-East Section of Qilian Mountains(Ⅰ): Distribution of permafrost[J]. Journal of Glaciology and Geocryology,2007,29(3):418−425.

    [13]

    吴青柏, 张中琼, 刘戈. 青藏高原气候转暖与冻土工程的关系[J]. 工程地质学报, 2021, 29(2): 342−352.

    WU Qingbai, ZHANG Zhongqiong, LIU Ge. Relationships between climate warming and engineering stability of permafrost on Qinghai-Tibet plateau[J]. Journal of Engineering Geology,2021,29(2):342−352.

    [14]

    张林梵. 基于时序InSAR的黄土滑坡隐患早期识别以白鹿塬西南区为例[J]. 西北地质, 2023, 56(3): 250−257. doi: 10.12401/j.nwg.2023086

    ZHANG Linfan. Early Identification of Hidden Dangers of Loess Landslide Based on Time Series InSAR:A Case Study of Southwest Bailuyuan[J]. Northwestern Geology,2023,56(3):250−257. doi: 10.12401/j.nwg.2023086

    [15]

    张廷军. 全球多年冻土与气候变化研究进展[J]. 第四纪研究, 2012, 32(1): 27−38. doi: 10.3969/j.issn.1001-7410.2012.01.03

    ZHANG Tingjun. Progress in global permafrost and climate change studies[J]. Quaternary Sciences,2012,32(1):27−38. doi: 10.3969/j.issn.1001-7410.2012.01.03

    [16]

    Cao B, Gruber S, Zhang T, et al. Spatial variability of active layer thickness detected by ground-penetrating radar in the Qilian Mountains, Western China[J]. Journal of Geophysical Research: Earth Surface,2017,122(3):574−591. doi: 10.1002/2016JF004018

    [17]

    Cao B, Zhang T J, Peng X Q, et al. Thermal characteristics and recent changes of permafrost in the upper reaches of the Heihe River Basin, Western China[J]. Journal of Geophysical Research: Atmospheres,2018,123(15):7935−7949. doi: 10.1029/2018JD028442

    [18]

    Che T, Li X, Liu S, et al. Integrated hydrometeorological, snow and frozen-ground observations in the alpine region of the Heihe River Basin, China[J]. Earth System Science Data,2019,11:1483−1499. doi: 10.5194/essd-11-1483-2019

    [19]

    Chen J, Wu Y, O’Connor M, et al. Active layer freeze-thaw and water storage dynamics in permafrost environments inferred from InSAR[J]. Remote Sensing of Environment,2020,248:112007. doi: 10.1016/j.rse.2020.112007

    [20]

    Chen J, Wu T, Liu L, et al. Increased water content in the active layer revealed by regional-scale InSAR and independent component analysis on the central Qinghai-Tibet Plateau[J]. Geophysical Research Letters, 2022a, 49(15).

    [21]

    Chen J, Wu T, Zou D, et al. Magnitudes and patterns of large-scale permafrost ground deformation revealed by Sentinel-1 InSAR on the central Qinghai-Tibet Plateau[J]. Remote Sensing of Environment,2022b,268:112778. doi: 10.1016/j.rse.2021.112778

    [22]

    Cheng G, Li X, Zhao W, et al. Integrated study of the water–ecosystem–economy in the Heihe River Basin[J]. National Science Review,2014,1(3):413−428. doi: 10.1093/nsr/nwu017

    [23]

    Daout S, Doin M P, Peltzer G, et al. Large-scale InSAR monitoring of permafrost freeze-thaw cycles on the Tibetan Plateau[J]. Geophtsical Research Letters,2017,44(2):901−909. doi: 10.1002/2016GL070781

    [24]

    Gao X, Lin K, Liu M, et al. Dynamic changes in permafrost distribution over China and their potential influencing factors under climate warming[J]. Science of The Total Environment,2023,874:162624. doi: 10.1016/j.scitotenv.2023.162624

    [25]

    Han P, Huang C, Liang S, et al. Variation characteristics and quantitative study of permafrost degradation in the upper reaches of Heihe River, China[J]. Journal of Hydrology,2022,610:127942. doi: 10.1016/j.jhydrol.2022.127942

    [26]

    Liu Lin, Schaefer K, Zhang Tingjun, et al. Estimating 1992-2000 average active layer thickness on the Alaskan North Slope from remotely sensed surface subsidence[J]. Journal of Geophysical Research: Earth Surface,2012,117(F1):F01005.

    [27]

    Liu S, Li X, Xu Z, et al. The Heihe Integrated Observatory Network: A basin-scale land surface processes observatory in China[J]. Vadose Zone Journal,2018,17:180072.

    [28]

    Liu S, Che T, Xu Z, et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (automatic weather station of Dashalong station, 2020)[DB/OL]. National Tibetan Plateau Data Center,2021.

    [29]

    Li Z, Zhao R, Hu J, et al. InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils[J]. Scientific Reports,2015,5:15542. doi: 10.1038/srep15542

    [30]

    Peng X, Zhang T, Frauenfeld, et al. Spatiotemporal changes in active layer thickness under contemporary and projected climate in the Northern Hemisphere[J]. Journal of Climate, 2018, 31(1):251-266.

    [31]

    Sun W, Zhang T, Gary, et al. Observed permafrost thawing and disappearance near the altitudinal limit of permafrost in the Qilian Mountains[J]. Advances in Climate Change Research,2022,13:642−650.

    [32]

    Wang Chao, Zhang Zhengjia, Zhang Hong, et al. Active Layer Thickness Retrieval of Qinghai-Tibet Permafrost Using the TerraSAR-X InSAR Technique[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(11):4403−4413. doi: 10.1109/JSTARS.2018.2873219

    [33]

    Wang Q, Zhang T, Jin H, et al. Observational study on the active layer freeze–thaw cycle in the upper reaches of the Heihe River of the north-eastern Qinghai-Tibet Plateau[J]. Quaternary International,2017,440:13−22. doi: 10.1016/j.quaint.2016.08.027

    [34]

    Wang L, Philip Marzahn, Monique Bernier, et al. Sentinel-1 InSAR measurements of deformation over discontinuous permafrost terrain, Northern Quebec, Canada[J]. Remote Sensing of Environment,2020,248:111965. doi: 10.1016/j.rse.2020.111965

    [35]

    You Q, Cai Z, Pepin N, et al. Warming amplification over the Arctic Pole and Third Pole: trends, mechanisms and consequences[J]. Earth-Science Reviews,2021,217:103625. doi: 10.1016/j.earscirev.2021.103625

    [36]

    Zhao L, Zou D, Hu G, et al. Changing climate and the permafrost environment on the Qinghai-Tibet(Xizang) Plateau[J]. Permafrost Periglac Process,2020,31:396−405. doi: 10.1002/ppp.2056

    [37]

    Zhang Xuefei, Zhang Hong, Wang Chao, et al. Time-series InSAR monitoring of permafrost freeze-thaw seasonal displacement over Qinghai-Tibetan Plateau using Sentinel-1 data[J]. Remote Sensing,2019,11:1000. doi: 10.3390/rs11091000

  • 加载中

(11)

(1)

计量
  • 文章访问数:  300
  • PDF下载数:  48
  • 施引文献:  0
出版历程
收稿日期:  2023-10-07
修回日期:  2024-01-03
录用日期:  2024-01-03
刊出日期:  2024-12-20

目录