Geochronology Geochemistry and Petrogenesis of the Granite and Diorite in Wusun Mountain Western Tianshan
-
摘要:
笔者选取位于伊犁盆地内乌孙山北缘察布查尔林场花岗岩为研究对象,其地球化学、地质年代学和岩石成因研究对于探讨西天山南缘壳幔岩浆作用具有较重要的指示意义。岩石地球化学特征显示二长花岗岩属高钾钙碱性准铝质-弱过铝质岩石系列;轻稀土富集,弱的Eu负异常(δEu=0.74~0.84),富集大离子亲石元素,亏损Nb、Ta、P、Ti等高场强元素特征,Zr/Hf=42~44,部分样品中含有少量的刚玉标准矿物,显示出壳源花岗岩的特征。闪长岩Al2O3、FeOT、CaO含量明显高于二长花岗岩,Na2O和K2O含量低于二长花岗岩,属于高钾准铝质岩石系列;轻稀土富集,显示出Eu的轻微正异常(δEu=0.90~1.24),富集大离子亲石元素,亏损Nb、Ta等高场强元素,此外,闪长岩还显示出具有高Sr(Sr>400×10−6)低Y(12.83×10−6)及Yb(1.34×10−6)和高Mg#特征,其源岩应为俯冲板片上覆地幔部分熔融产物。二者均显示出岛弧岩浆的特征。二长花岗岩锆石U-Pb年龄为(361.7±1.8) Ma;形成于晚泥盆世末期,结合前人的研究资料认为在~360 Ma由于南天山洋板片的回撤或俯冲流体参与,上覆地幔发生部分熔融产生了基性岩浆,岩浆上涌过程中提供大量的热导致地壳发生部分熔融形成了酸性岩浆,两种岩浆发生不均匀混合作用。上涌的岩浆引起地幔对流,导致伊犁地块内部出现一定的伸展作用(弧后伸展作用)。
Abstract:The study object is located in the Chabuchaer Forest Farm on the northern margin of Wushun Mountain in Yili Basin, the studying of geochemistry, geochronology and petrogenesis have an important indicative significance for discussing crust-mantle magmatism in the southern margin of the West Tianshan. The geochemical characteristics show that the monzogranites is a high-potassium-calcium-alkaline and quasi-aluminous-weak peraluminous rocks, the monzogranites is enriched with LREE、weak negative Eu anomaly (δEu=0.74~0.84)、rich in LILEs and deficient in HFSEs(Nb、Ta、Ti、P), its Zr/Hf radios are 42~44, some samples contain a small amount of corundum mineral, and it show the characteristics of crust-derived granite. The Al2O3, FeOT and CaO of the diorite is obviously higher than that in granite, but the Na2O and K2O is lower than the granite, it belongs to high-potassium-calcium-alkaline quasi-aluminous rock; the diorite is enriched with LREE、weak positive anomaly of Eu(δEu=0.90~1.24)、rich in LILEs and deficient in HFSEs(Nb、Ta), in addition, the diorite has high Sr (Sr>400×10−6), low Y (12.83×10−6) and Yb (1.34×10−6) and high Mg#, therefore, the source rock is the partial melting product of the mantle overlying the subduction slab, which enrichment hornblende. The monzogranite and diorite show the characteristics of island arc magma. The zircon U-Pb dating results show that the age of monzogranite is 361.7±1.8 Ma, and belong to the late Devonian. Combined with previous research data, we believed that in ~360 Ma, due to the rolling-back or subduction of the southern Tianshan ocean plate, the overlying mantle partially melted and produced the basic magma. During the uppouring process of the magma, a large amount of heat were provided, which led to partial melting of the crust and the formation of acidic magma, and the two kinds of magma had uneven mixing. At the same time, mantle convection caused by upwelling magma leads to a certain extension (back-arc extension) in the Yili block.
-
Key words:
- Western Tianshan /
- granite and inclusion /
- zircon U-Pb dating /
- geochemistry /
- tectonic environment
-
-
图 1 研究区地质简图(a据Xu et al. ,2012修改)
Figure 1.
图 5 乌孙山地区花岗岩和闪长岩TAS图解(a),K2O-SiO2(b)和A/NK-A/CNK(c)图解(引自Bao et al., 2018)
Figure 5.
图 6 乌孙山地区花岗岩、闪长岩及中酸性火山岩稀土元素球粒陨石标准配分曲线和微量元素原始地幔标准化蛛网图(标准化值、N-MORB数据引自 Sun et al.,1989;上地壳、下地壳数据引自Rudnick et al.,2003)
Figure 6.
图 7 (Na2O+K2O)/CaO-Zr+Nb+Ce+Y图解(Whalen et al., 1987)及Rb-Ce和Rb-Y图解(Wang et al., 2012)
Figure 7.
表 1 乌孙山地区花岗岩LA-ICP-MS锆石U-Pb定年结果
Table 1. LA-ICP-MS zircon U-Pb date of the granite in Wusunshan area
样品号 含量(10−6) 同位素比值 同位素比值 年龄(Ma) 13XY-34 Pb U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 208Pb/232Th 1σ 232Th/238U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 1 17 198 0.0766 0.0006 0.5975 0.0376 0.0565 0.0036 0.0224 0.0012 0.7349 0.0022 476 4 476 30 474 142 3 10 165 0.0582 0.0004 0.4400 0.0279 0.0548 0.0035 0.0125 0.0006 0.6879 0.0022 365 2 370 23 404 142 4 18 241 0.0688 0.0005 0.5290 0.0218 0.0558 0.0024 0.0151 0.0006 0.7741 0.0010 429 3 431 18 445 95 5 14 227 0.0587 0.0004 0.4420 0.0176 0.0546 0.0021 0.0121 0.0005 0.6571 0.0007 368 2 372 15 397 88 6 15 264 0.0570 0.0003 0.4265 0.0160 0.0543 0.0020 0.0108 0.0005 0.6880 0.0010 357 2 361 13 383 83 7 14 228 0.0584 0.0004 0.4401 0.0195 0.0546 0.0024 0.0121 0.0006 0.6391 0.0012 366 2 370 16 397 98 8 21 347 0.0581 0.0004 0.4353 0.0147 0.0543 0.0018 0.0111 0.0006 0.8042 0.0009 364 2 367 12 384 74 9 20 327 0.0579 0.0004 0.4373 0.0160 0.0548 0.0020 0.0104 0.0005 0.7997 0.0095 363 2 368 13 403 81 10 18 289 0.0586 0.0003 0.4391 0.0168 0.0544 0.0020 0.0120 0.0006 0.7757 0.0006 367 2 370 14 386 84 11 14 244 0.0576 0.0004 0.4323 0.0281 0.0545 0.0035 0.0117 0.0005 0.6680 0.0027 361 3 365 24 390 144 12 11 178 0.0586 0.0004 0.4358 0.0288 0.0539 0.0035 0.0116 0.0005 0.7017 0.0013 367 2 367 24 367 147 13 18 292 0.0580 0.0004 0.4323 0.0217 0.0540 0.0027 0.0130 0.0005 0.7243 0.0012 364 2 365 18 372 113 14 19 326 0.0574 0.0003 0.4322 0.0190 0.0546 0.0024 0.0098 0.0004 0.8631 0.0009 360 2 365 16 398 98 15 8 138 0.0569 0.0005 0.4284 0.0480 0.0546 0.0061 0.0165 0.0010 0.5464 0.0010 357 3 362 41 395 250 21 20 338 0.0579 0.0003 0.4364 0.0129 0.0546 0.0016 0.0138 0.0007 0.6215 0.0015 363 2 368 11 397 64 22 22 369 0.0572 0.0003 0.4296 0.0184 0.0544 0.0023 0.0120 0.0007 0.7433 0.0029 359 2 363 16 390 95 23 26 423 0.0579 0.0003 0.4368 0.0136 0.0547 0.0017 0.0131 0.0008 0.6679 0.0024 363 2 368 11 400 69 24 19 322 0.0580 0.0003 0.4351 0.0163 0.0544 0.0020 0.0124 0.0009 0.6336 0.0010 364 2 367 14 388 82 26 22 353 0.0575 0.0003 0.4293 0.0158 0.0542 0.0020 0.0125 0.0007 0.7908 0.0013 360 2 363 13 379 81 27 20 344 0.0563 0.0004 0.4205 0.0354 0.0541 0.0046 0.0125 0.0007 0.7217 0.0038 353 2 356 30 377 189 28 20 339 0.0568 0.0004 0.4230 0.0239 0.0540 0.0029 0.0121 0.0007 0.7839 0.0016 356 2 358 20 370 123 29 21 349 0.0567 0.0003 0.4238 0.0142 0.0542 0.0018 0.0141 0.0009 0.6705 0.0013 356 2 359 12 379 74 30 29 468 0.0578 0.0003 0.4356 0.0141 0.0547 0.0017 0.0130 0.0009 0.7430 0.0009 362 2 367 12 399 71 表 2 乌孙山地区花岗岩和闪长岩主量元素(%)、稀土元素和微量元素(10−6)分析结果
Table 2. Major and trace element analyses of the granites and dioritefrom the Wusunshan area
样品 二长花岗岩:13XY-34 闪长岩:13XY-35 1h 2h 3h 4h 5h 1h 2h 3h 4h 5h 6h SiO2 71.18 70.22 70.78 72.00 71.35 52.07 52.61 52.24 52.54 51.84 52.32 Al2O3 14.04 14.40 14.18 14.29 14.22 16.50 16.78 16.70 16.83 16.68 16.86 Fe2O3 0.60 0.88 0.62 0.20 0.88 2.46 2.37 2.30 1.91 1.83 2.27 FeO 1.90 2.12 2.01 1.81 1.65 5.78 6.26 6.40 6.71 6.66 6.36 FeOT 2.44 2.91 2.57 1.99 2.44 7.99 8.39 8.47 8.43 8.31 8.40 CaO 1.84 2.64 2.16 1.86 2.50 8.23 8.30 8.01 8.26 7.48 8.27 MgO 0.96 1.00 0.88 0.67 0.83 5.90 5.79 6.00 6.04 5.36 6.04 K2O 3.90 3.94 3.86 4.33 3.90 1.86 1.96 1.86 1.68 1.72 1.71 Na2O 3.63 3.43 3.72 3.63 3.50 3.42 2.50 2.80 2.57 3.46 2.68 TiO2 0.31 0.35 0.31 0.25 0.29 0.82 0.82 0.82 0.79 0.87 0.80 P2O5 0.07 0.09 0.07 0.05 0.07 0.18 0.15 0.15 0.15 0.16 0.15 MnO 0.04 0.05 0.05 0.04 0.04 0.17 0.15 0.16 0.15 0.15 0.15 LOI 1.51 0.88 1.35 0.87 0.76 2.58 2.28 2.51 2.36 3.75 2.35 Total 99.98 100.00 99.99 100.00 99.99 99.97 99.97 99.95 99.99 99.96 99.96 A/CNK 1.04 0.98 1.00 1.02 0.98 0.73 0.79 0.79 0.80 0.79 0.79 K2O/Na2O 1.07 1.15 1.04 1.19 1.11 0.54 0.78 0.66 0.65 0.50 0.64 Mg# 41.22 37.96 37.91 37.50 37.72 56.81 55.14 55.80 56.08 53.49 56.16 σ 2.01 2.00 2.07 2.18 1.93 3.07 2.07 2.35 1.89 3.04 2.07 C 0.68 0.13 0.37 Cu 6.99 4.57 6.09 4.27 4.20 25.50 76.00 72.00 75.30 88.00 69.40 Pb 4.42 5.72 5.29 6.60 7.15 13.00 6.12 6.52 15.20 44.00 15.30 Zn 18.20 17.70 18.40 13.90 14.60 80.10 64.80 66.00 75.30 92.50 71.60 Cr 5.44 4.27 14.80 4.52 3.47 137.00 103.00 104.00 109.00 94.00 109.00 Ni 1.86 2.15 6.75 1.62 1.21 33.10 24.70 24.40 27.20 20.20 26.00 Co 6.03 6.29 5.52 4.12 4.94 29.00 31.80 33.60 33.10 31.40 32.40 Li 1.99 1.81 0.92 1.00 1.19 6.66 6.38 9.24 9.05 11.70 9.10 Rb 113.00 129.00 102.00 119.00 118.00 65.30 61.10 64.80 56.50 56.40 56.90 Cs 1.30 1.56 1.39 1.14 1.43 0.79 2.04 1.56 1.00 0.92 0.92 Mo 0.46 0.22 0.56 0.21 0.22 0.41 0.28 0.21 0.13 0.36 0.21 Sr 204.00 246.00 241.00 204.00 230.00 492.00 413.00 465.00 417.00 382.00 413.00 Ba 711.00 626.00 708.00 500.00 668.00 275.00 355.00 356.00 327.00 326.00 316.00 V 49.00 57.80 47.30 32.40 45.20 266.00 285.00 290.00 284.00 306.00 286.00 Sc 6.92 8.19 7.01 4.82 6.70 28.10 33.30 30.40 29.20 33.30 33.90 Nb 5.79 6.51 6.04 4.97 6.15 3.35 3.34 1.52 1.51 2.27 1.45 Ta 0.61 0.62 0.59 0.73 0.73 0.40 0.35 0.20 0.18 0.26 0.17 Zr 144.00 165.00 144.00 114.00 159.00 45.90 42.70 41.20 43.00 49.00 35.90 Hf 3.22 3.87 3.19 2.78 3.69 1.30 1.35 0.98 0.93 1.36 0.82 Ga 13.00 14.40 13.40 13.10 13.60 16.00 16.40 15.80 15.80 17.00 15.70 U 1.82 1.64 1.46 1.69 1.69 0.88 0.76 0.51 0.43 0.52 0.38 Th 11.00 9.39 10.10 10.80 10.70 4.10 4.31 1.91 1.56 1.75 1.34 Y 13.90 15.80 14.40 12.20 14.60 12.50 17.00 11.40 11.20 13.90 11.00 Ti 1858.14 2097.90 1858.14 1498.50 1738.26 4915.08 4915.08 4915.08 4735.26 5214.78 4795.20 K 32375.07 32707.12 32043.02 35944.63 32375.07 15440.42 16270.55 15440.42 13946.18 14278.24 14195.22 P 305.20 392.40 305.20 218.00 305.20 784.80 654.00 654.00 654.00 697.60 654.00 La 17.50 16.70 15.20 17.70 18.70 9.77 9.45 5.10 5.17 7.79 4.94 Ce 34.20 32.50 31.50 31.50 36.50 20.50 22.10 11.30 11.90 17.50 11.30 Pr 3.88 3.64 3.52 3.37 3.90 2.34 2.83 1.59 1.60 2.28 1.54 Nd 12.60 12.50 12.10 10.10 12.90 8.83 10.80 6.82 6.97 9.11 6.43 Sm 2.75 2.56 2.40 2.16 2.58 2.15 2.89 1.87 1.91 2.24 1.81 Eu 0.69 0.63 0.67 0.56 0.63 0.84 0.86 0.78 0.76 0.95 0.75 Gd 2.50 2.67 2.48 1.98 2.42 2.28 2.96 2.08 2.07 2.46 2.12 Tb 0.41 0.45 0.41 0.31 0.41 0.40 0.48 0.34 0.35 0.42 0.36 Dy 2.54 2.72 2.46 1.96 2.59 2.31 3.03 2.14 2.09 2.52 2.06 Ho 0.56 0.59 0.53 0.44 0.54 0.47 0.65 0.44 0.44 0.52 0.44 Er 1.62 1.74 1.54 1.31 1.58 1.35 1.88 1.26 1.20 1.51 1.25 Tm 0.26 0.27 0.25 0.21 0.25 0.20 0.29 0.18 0.18 0.23 0.18 Yb 1.67 1.81 1.65 1.45 1.69 1.32 1.82 1.17 1.20 1.42 1.12 Lu 0.26 0.29 0.26 0.23 0.27 0.21 0.28 0.18 0.18 0.22 0.17 ∑REE 81.44 79.07 74.97 73.28 84.96 52.97 60.32 35.25 36.02 49.17 34.47 (La/Yb)N 7.52 6.62 6.61 8.76 7.94 5.31 3.72 3.13 3.09 3.94 3.16 (La/Sm)N 4.11 4.21 4.09 5.29 4.68 2.93 2.11 1.76 1.75 2.25 1.76 (Gd/Yb)N 1.24 1.22 1.24 1.13 1.18 1.43 1.35 1.47 1.43 1.43 1.57 Sr/Y 14.68 15.57 16.74 16.72 15.75 39.36 24.29 40.79 37.23 27.48 37.55 δEu 0.80 0.74 0.84 0.83 0.77 1.16 0.90 1.21 1.17 1.24 1.17 -
[1] 高俊, 钱青, 龙灵利, 等. 西天山的增生造山过程[J]. 地质通报, 2009, 28(12): 1804−1816.
GAO Jun, QIAN Qing, LONG Lingli, et al. Accretionary orogenic process of Western Tianshan, China[J]. Geologcal Bulletin of China,2009,28(12):1804−1816.
[2] 李永军, 李注苍, 佟丽莉, 等. 论天山古洋盆关闭的地质时限-来自伊宁地块石炭系的新证据[J]. 岩石学报, 2010, 25(6): 2905−2912.
LI Yongjun, LI Zhucang, TONG Lili, et al. Revisit the constraints on the closure of the Tianshan ancient oceanic basin: New evidence from Yining block of the Carboniferous[J]. Acta Petrologica Sinica,2010,25(6):2905−2912.
[3] 李承东, 张旗, 苗来成, 等. 冀北中生代高Sr低Y和低Sr低Y型花岗岩: 地球化学、成因及其与成矿作用的关系[J]. 岩石学报, 2004, 20(2): 269−284.
LI Chengdong, ZHANG Qi, MIAO Laicheng, et al. Mesozoic high-Sr, low-Y and low-Sr, low-Y types granitoids in the northern Hebei province: Geochemistry and petrogenesis and its relation to mineralization of gold deposits[J]. Acta Petrologica Sinica,2004,20(2):269−284.
[4] 李昌年. 岩浆混合作用及其研究评述[J]. 地质科技情报, 2002, 21(4): 49−54.
LI Changnian. Comment on the magama mixing and their research[J]. Geological Science and Technology Information,2002,21(4):49−54.
[5] 刘新, 钱青, 苏文, 等. 西天山阿吾拉勒西段木汗巴斯陶侵入岩体的地球化学特征、时代及地质意义[J]. 岩石学报, 2012, 28(8): 2401−2413.
LIU Xin, QIAN Qing, SU Wen, et al. Pluton from Muhanbasitao in the western of Awulale, Western Tianshan: Geochemistry, geochronology and geological implications[J]. Acta Petrologica Sinica,2012,28(8):2401−2413.
[6] 马昌前, 王人镜. 花岗质岩浆起源和多次岩浆混合的标志: 包体-以北京周口店岩体为例[J]. 地质论评, 1992, 38(2): 109−119.
MA Changqian,WANG Renjing. Enclaves as indicators of the origin of granitoid magama and repeater magama mingling : an example fromthe Zhoukoudian intrusionBeijing[J]. Geological Review,1992,38(2):109−119.
[7] 齐有强, 胡瑞忠, 刘桑, 等. 岩浆混合作用研究综述[J]. 矿物岩石地球化学通报, 2008, 27(4): 409−416.
QI Youqiang ,HU Ruizhong ,LIU Shen,et al. Review on Magana Mixing and Mingling[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008 , 27(4):409−416.
[8] 茹艳娇. 西天山大哈拉军山组火山岩地层序列、 岩石成因与构造环境[D]. 西安: 长安大学, 2012, 1−113.
RU Yanjiao. The Stratigraphic Sequanence,Petrogenesis and Tectonic Setting of the Volcanic Rocks of the Dahalajunshan Formation,Western Tianshan Mountain,China[D]. Xi’an: Chang’an University,2012, 1−113.
[9] 舒良树, 王博, 朱文斌. 南天山蛇绿混杂岩中放射虫化石的时代及其构造意义[J]. 地质学报, 2007, 81(9): 1161−1168.
SHU Liangshu,WANG Bo,ZHU Wenbin. Age of Radiolarian Fossils from the Heiyingshan Ophiolitic Melange,Southerm Tianshan Belt,NWChina ,and its Tectonic Significance[J]. Acta Geologica Sinica,2007,81(9):1161−1168.
[10] 孙吉明, 白建科, 马中平, 等. 西天山特克斯县北乌孙山大哈拉军山组火山岩地球化学特征及构造意义[J]. 岩石矿物学杂志, 2014, 33(5): 799−810.
SUN Jiming, BAI Jianke, MA Zhongping, et al. Geochemical characteristics and tectonic implications of Wusunshan volcanic rocks in northern Tekes County of West Tianshan Mountains[J]. Acta Petrologica et Mineralogica,2014,33(5):799−810.
[11] 唐功建, 陈海红, 王强, 等. 西天山达巴特A型花岗岩的形成时代与构造背景[J]. 岩石学报, 2008, 24(5): 947−958
TANG Gongjian, CHEN Haihong, WANG Qiang, et al. Geochronological age and tectonic background of the Dabate A-type granite pluton in the west Tianshan[J]. Acta Petrologica Sinica. 2008, 24(5): 947−958.
[12] 童英, 王涛, 洪大卫, 等. 北疆及邻区石炭-二叠纪花岗岩时空分布特征及其构造意义[J]. 岩石矿物学杂志, 2010, 29(6): 619−641.
TONG Ying, WANG Tao, HONG Dawei, et al. Spatial and temporal distribution of the Carboniferous-Permian granitoids in northern Xinjiang and its adjacent areas, and its tectonic significance[J]. Acta Petrologica et Mineralogica,2010,29(6):619−641.
[13] 王博, 舒良树, Cluzel D, 等. 伊犁北部博罗科努岩体年代学和地球化学研究及其大地构造意义[J]. 岩石学报, 2007, 23(8): 1885−1900.
WANG Bo, SHU Liangshu, Cluzel D, et al. Geochronological and geochemical studies on the Borohoro plutons, north of Yili, NW Tianshan and their Tectonic implication[J]. Acta Petrologica Sinica,2007,23(8):1885−1900.
[14] 吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6): 1217-1238.
WU Fuyuan, LI Xianhua, YANG Jinhui, et al, Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 2007, 23(6): 1217-1238.
[15] 许继峰, 邬建斌, 王强, 等. 埃达克岩与埃达克质岩在中国的研究进展[J]. 矿物岩石地球化学通报, 2014, 33(1): 6−13.
XU Jifeng, WU Jianbin, WANG Qiang, et al. Research Advances of Adakites and Adakitic Rocks in China[J]. Bulletin of Mineralogy Petrology and Geochemistry,2014,33(1):6−13.
[16] 张旗, 王焰, 李承东, 等. 花岗岩的Sr-Yb分类及其地质意义[J]. 岩石学报, 2006, 22(9): 2249−2269.
ZHANG Qi, WANG Yan, LI Chengdong, et al. Granite classification on the basis of Sr and Yb contents and its implications[J]. Acta Petrologica Sinica,2006,22(9):2249−2269.
[17] 朱永峰, 周晶, 宋彪, 等. 新疆“大哈拉军山组”火山岩的形成时代问题及其解体方案[J]. 中国地质, 2006, 33(3): 487−497.
ZHU Yongfeng, ZHOU Jing, SONG Biao, et al. Age of the "Dahalajunshan" Formation in Xinjiang and its disintegration[J]. Chinese Geology,2006,33(3):487−497.
[18] Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos,1999,46(3):605−626. doi: 10.1016/S0024-4937(98)00085-1
[19] Bao Z H, Cai K D, Sun M, et al. Continental crust melting induced by subduction initiation of the South Tianshan Ocean: Insight from the Latest Devonian granitic magmatism in the southern Yili Block, NW China[J]. Journal of Asian Earth Sciences,2018,153:100−117. doi: 10.1016/j.jseaes.2017.04.026
[20] Dong Y P, Zhang G W, Neubauer F, et al. Syn- and post-collisional granitoids in the Central Tianshan orogen: Geochemistry, geochronology and implications for tectonic evolution[J]. Gondwana Research,2011,20(2−3):568−581.
[21] Gao J, Li M S, Xiao X X, et al. Paleozoic tectonic evolution off the Tianshan Orogen, northwestern China[J]. Tectonophysics,1998,287(1−4):213−231. doi: 10.1016/S0040-1951(97)00211-4
[22] Gao J, Klemd. Formation of HP-LT rocks and their tectonic implications in the western Tianshan Orogen, NW China: geochemical and age constraints[J]. Lithos,2003,66:1−22.
[23] Gerya T V. Future directions in subduction modeling[J]. Journal of Geodynamics,2011,52(5):344−378.
[24] Gerya T V, Connolly J A D, Yuen D A. Why is terrestrial subduction one-sided? [J]. Geology, 2008, 36 (1), 43−46.
[25] Han B F, Guo Z J, Zhang Z C, et al. Age, geochemistry, and tectonic implications of a late Paleozoic stitching pluton in the North Tian Shan suture zone, western China[J]. Geological Society of America Bulletin,2010,122(3−4):627−640. doi: 10.1130/B26491.1
[26] Huang H, Wang T, Tong Y, et al. Rejuvenation of ancient micro-continents during accretionary orogenesis: Insights from the Yili Block and adjacent regions of the SW Central Asian Orogenic Belt[J]. Earth-Science Reviews, 2020, 208: 1−22.
[27] Hyndman R D, Currie C A. Subduction zone backarcs, continental mobile belts, and orogenic heat[J]. GSA Today , 2005, 15, 463−475.
[28] Jiang Z S, Zhang Z H, Wang Z H, et al. Geology, geochemistry, and geochronology of the Zhibo iron deposit in the Western Tianshan, NW China: Constraints on metallogenesis and tectonic setting[J]. Ore Geology Reviews,2014,57(3):406−424.
[29] Jung S, Pfänder J A. Source composition and melting temperatures of orogenic granitoid: Constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry[J]. European Journal of Mineralogy,2007,19(6):859−870. doi: 10.1127/0935-1221/2007/0019-1774
[30] Kröner A, Alexeiev D V, Rojas-Agramonte Y, et al. Mesoproterozoic ( Grenville-age) terranes in the Kyrgyz North Tianshan: Zircon ages and Nd-Hf isotopic constraints on the origin and evolution of basement blocks in the southern Central Asian Orogen[J]. Gondwana Research,2013,23(1):272−295.
[31] Long L L, Gao J, Klemd R, et al. Geochemical and geochronological studies of granitoid rocks from the Western Tianshan Orogen: Implications for continental growth in the southwestern Central Asian Orogenic Belt[J]. Lithos,2011,126(3-4):321−340. doi: 10.1016/j.lithos.2011.07.015
[32] Liu W, Fei P X. Methane-rich fluid inclusions from ophiolitic dunite and post-collisional mafic-ultramafic intrusion: The mantle dynamics underneath the Paleo-Asian Ocean through to the post-collisional period[J]. Earth and Planetary Science Letters,2006,242(3−4):286−301. doi: 10.1016/j.jpgl.2005.11.059
[33] Liu Y. Early Carboniferous Radiolarian Fauna from Heiyingshan South of the Tianshan Mountains and Its Geotectonic Significance[J]. Acta Petrologica Sinica,2001,75(1):101−105. doi: 10.1111/j.1755-6724.2001.tb00511.x
[34] Li Y J, Sun L D, Wu H R, et al. Permo-Carboniferous Radiolarians from the Wupataerkan Group , Western South Tianshan , Xinjiang , China[J]. Acta Petrologica Sinica, 2005, 79(1): 16−23.
[35] Ma X X, Shu L S, Meert J G. Early Permian slab breakoff in the Chinese Tianshan belt inferred from the postcollisional granitoids[J]. Gondwana Research,2015,27(1):228−243. doi: 10.1016/j.gr.2013.09.018
[36] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology,1984,25(4):956−983. doi: 10.1093/petrology/25.4.956
[37] Pearce J A, Peate D W. Tectonic implications of the composition of volcanic ARC magmas[J]. Annual Review of Earth and Planetary Sciences,1995,23(1):251−286. doi: 10.1146/annurev.ea.23.050195.001343
[38] Qian Q, Gao J, Klemd R, et al. Early Paleozoic tectonic evolution of the Chinese South Tianshan Orogen: constraints from SHRIMP zircon U-Pb geochronology and geochemistry of basaltic and diorite rocks from Xiate, NW China[J]. International Journal of Earth Sciences, 2008, 98(3): 551−569.
[39] Rudnick, Gao S. Composition of the continental crust[J]. In: Rudnick R L (ed.). Treatise on Geochemistry[M]. Amsterdam: Elsevier,2003,3:1−64.
[40] Seltmann R, Konopelko D, Biske G, et al. Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt[J]. Journal of Asian Earth Sciences,2011,42(42):821−838.
[41] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A. D, Norry, M. J (Eds.). Magmatism in Ocean Basins[J]. In: Saunders A D, Norry M J (Eds.). Magmatism in Ocean Basins[M]. Geological Society of London Special Publication,1989,42:313−345. doi: 10.1144/GSL.SP.1989.042.01.19
[42] Sun L H, Wang YJ , Fan W M, et al. Post collisional potassic magmatism in the Southern Awulale Mountain, western Tianshan Orogen: Petrogenetic and tectonic implications[J]. Gondwana Research,2008,14(3):383−394.
[43] Su W, Gao J, Klemd R, et al. U-Pb zircon geochronology of Tianshan eclogites in NW China: implication for the collision between the Yili and Tarim blocks of the southwestern Altaids[J]. European Journal of Mineralogy,2010,22:473−478.
[44] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology,1987,95:407−419. doi: 10.1007/BF00402202
[45] Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society,2007,164(12):31−47.
[46] Wilhem C, Windley B. F, Stampfli G. M. The Altaids of Central Asia: a tectonic and evolutionary innovative review[J]. Earth Science Reviews,2012,113:303−341. doi: 10.1016/j.earscirev.2012.04.001
[47] Wyllie P J , Cox K G, Biggar C M. The Habit of Apatite in Synthetic Systems and Igneous Rocks[J]. Journal of Petrology, 1962, 3 (2).
[48] Wang M, Zhang J J, Zhang B, et al. An Early Paleozoic collisional event along the northern margin of the Central Tianshan Block: Constraints from geochemistry and geochronology of granitic rocks[J]. Journal of Asian Earth Sciences,2014,113:325−338.
[49] Wang Q, Zhu D C, Zhao Z D, et al. Magmatic zircons from I-, S- and A-type granitoids in Tibet: trace element characteristics and their application to detrital zircon provenance study[J]. Journal of Asian Earth Sciences,2012,53:59−66.
[50] Xia L Q, Xu X Y, Li X M, et al. Reassessment of petrogenesis of Carboniferous-Early Permian rift-related volcanic rocks in the Chinese Tianshan and its neighboring areas[J]. Geoscience Frontiers,2012,3(4):445−471. doi: 10.1016/j.gsf.2011.12.011
[51] Xiao W J, Kusky T, Safonova I, et al. Tectonics of the Central Asian Orogenic Belt and its Pacific analogues[J]. Journal of Asian Earth Sciences,2015,113:1−6. doi: 10.1016/j.jseaes.2015.06.032
[52] Xiao W J, Santosh M. The western Central Asian Orogenic Belt: A window to accretionary orogenesis and continental growth[J]. Gondwana Research,2014,25(4):1429−1444. doi: 10.1016/j.gr.2014.01.008
[53] Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): Implications for the continental growth of central Asia[J]. American Journal of Science,2004,304(4):370−395. doi: 10.2475/ajs.304.4.370
[54] Xiao W J, Windley B. F, Allen M. B, et al. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage[J]. Gondwana Research,2013,23:1316−1341.
[55] Zhang D Y, Zhang Z C, Encarnación J, et al. Petrogenesis of the Kekesai composite intrusion, western Tianshan, NW China: Implications for tectonic evolution during late Paleozoic time[J]. Lithos,2012,146(8):65−79.
[56] Zhao Z H, Xiong X L, Wang Q, et al. Late Paleozoic under plating in North Xinjiang: Evidence from shoshonite and adakite[J]. Gongwana Research,2009,16:216−226. doi: 10.1016/j.gr.2009.03.001
[57] Zhang L F, Du J X, Lü Z, et al. A huge oceanic-type uhp metamorphic belt in Southwestern Tianshan, China: peak metamorphic age and p-t path[J]. Science Bulletin,2013,58(35):4378−4383. doi: 10.1007/s11434-013-6074-x
[58] Zhang L F, Ai Y L, Li X P , et al. Triassic collision of westernTianshan orogenic belt , China: Evidence from SHRIMP U-Pb datingof zircon from HP/UHP eclogitic rocks[J]. Lithos,2007,96(1−2):266−280.
[59] Zhong L, Wang B, Alexeiev D V, et al. Paleozoic multi-stage accretionary evolution of the SW Chinese Tianshan: new constraints from plutonic complex in the Nalati Range[J].Gondwana Research, 2017, 45, 254−274.
[60] Xu X Y, Wang H L, Li P, et al. Geochemistry and geochronology of Paleozoic intrusions in the Nalati (Narati) area in weatern Tianshan, Xinjiang, China: Implications for Paleozoic tectonic evolution[J]. Journal of Asian Earth Sciences, 2012, 1−30.
-