Deformation Characteristics and Prediction of Resurrection Conditions of Landslide Ⅲ-2 in Gaolan Mountain, Lanzhou
-
摘要:
皋兰山滑坡是兰州市区最大的老滑坡群,滑坡前缘是兰州市区人口最密集地段之一。 近年来,受极端降水、绿化灌溉影响,滑坡局部出现变形迹象,以Ⅲ-2号变形最显著,对坡下居民生命财产安全构成直接威胁。笔者以现场监测数据基础,分析滑坡变形特征;基于滑坡未来可能遭遇的极端工况,基于定量方法,确定滑坡整体失稳条件。结果表明,地表开裂仅是局部落水洞扩展,裂缝变形并非与降雨入渗后滑体中含水量变化密切相关,当前整体稳定,日降雨量36 mm对滑坡变形没有影响。基于定量计算结果,皋兰山Ⅲ-2大规模复活的可能性较小;百年一遇降雨后,滑坡稳定性降低,但不会整体失稳;极低概率的特大暴雨后,滑坡可能复活;Ⅷ度地震影响后,滑坡可能复活。研究结果可为当地防灾减灾和国土空间用途管制提供依据。
Abstract:The Gaolan Mountain landslide is the largest group of old landslides in Lanzhou, and the landslide front is one of the most densely populated areas in Lanzhou. In recent years, affected by extreme precipitation and green irrigation, local deformation signs have appeared in landslides, with No. Ⅲ-2 deformation being the most significant, posing a direct threat to the safety of residents' lives and property under the slope. Based on on-site monitoring data, this paper analyzes the deformation characteristics of landslides. Based on the extreme working conditions that the landslide may encounter in the future, the overall instability conditions of the landslide are determined based on quantitative methods. The results show that the surface cracking is only the extension of the local tribal water hole, and the fracture deformation is not closely related to the change of water content in the slip body after rainfall infiltration, and the overall stability is currently stable, and the daily rainfall of 36 mm has no effect on the landslide deformation. Based on quantitative calculations, the large-scale resurrection of Gaolan Mountain Ⅲ-2 is less likely. After a once-in-a-century rainfall, the stability of landslides decreases, but it will not be unstable overall; After a very low probability of heavy rainfall, the landslide may be revived; After the impact of a magnitude Ⅷ earthquake, landslides may be revived. The research results can provide a basis for local disaster prevention and mitigation and land space use control.
-
Key words:
- loess slope /
- dynamic monitoring /
- water and soil relation /
- stability analysis /
- buckling mode
-
-
表 1 皋兰山Ⅲ-2号滑坡岩土体物理力学参数表
Table 1. Physical and mechanical parameters of rock and soil mass of Gaolan Mountain Ⅲ-2 landslide
分区 渗透系数(m/s) 饱和土含水量wsr 残余水含水率r 天然重度(KN/m3) 饱和重度(KN/m3) C(kPa) Φ(°) 滑体
(Ⅲ-2)1.1E-05 0.36 0.065 18.6 19.7 19 17.75 滑体
(Ⅲ)1.0E-05 0.37 0.065 18.9 20.1 30 24 滑体
(老狼沟)1.0E-05 0.37 0.065 18.9 20.1 35 33 滑带 5E-09 0.36 0.125 19.1 19.9 27.1 15.2 -
[1] 段钊, 张弘, 唐皓, 等. 泾河下游黄土台塬区侵蚀诱发滑坡机理[J]. 地质科技情报, 2019, 38(6): 10−16.
DUAN Zhao, ZHANG Hong, TANG Hao, et al. Mechanism of Erosion Induced Landslide in Loess Plateau Area in the Lower Reaches of Jing River[J]. Geological of Science and Technology Information,2019,38(6):10−16.
[2] 高黎黎, 陈玉明, 王光进. 基于饱和-非饱和渗流理论的大型排土场边坡稳定性分析[J]. 化工矿物与加工, 2022, 51(10): 20−24.
GAO Lili, CHEN Yuming, WANG Guangjin. Slope stability analysis of a large dump based on saturated-unsaturated seepage theory[J]. Industrial Minerals & Processing,2022,51(10):20−24.
[3] 黄玉华. 陕北“对滑”型黄土滑坡发育特征及其整治对策探讨——以子长县阎家沟滑坡为例[J]. 西北地震学报, 2009, 31(2): 152−156.
HUANG Yuhua. Discussion on the Development Characteristics and Prevention Countermeasures of"Opposite-slide"Loess Landslide in Northern Shaanxi Province: Taking the landslide in Yanjiagou‚Zichang county‚ as example[J]. Northwestern Seismological Journal,2009,31(2):152−156.
[4] 金艳丽, 戴福初. 灌溉诱发黄土滑坡机理研究[J]. 岩土工程学报, 2007(10): 1493−1499.
JIN Yanli, DAI Fuchu. The mechanism of irrigation-induced landslides of loess[J]. Chinese Journal of Geotechnical Engineering,2007(10):1493−1499.
[5] 雷祥义. 陕西关中人为黄土滑坡类型的研究──人类活动的黄土斜坡地质环境负效应问题[J]. 水文地质工程地质, 1996(3): 36−39+42.
LEI Xiangyi. A study of man-made loess landslide types in Guanzhong in Shaanxi Province—The problem of negative effects of human activities on the geological environment of loess slopes[J]. Hydrogeology & Engineering Geology,1996(3):36−39+42.
[6] 李秀珍, 何思明, 王震宇, 等. 降雨入渗诱发斜坡失稳的物理模型适用性分析[J]. 灾害学, 2015, 30(1): 34−38.
LI Xiuzhen, HE Siming, WANG Zhenyu, et al. Applicability Analysis on Physical Models of Slope Instability Induced by Rainfall Infiltration[J]. Journal of Catastrophology,2015,30(1):34−38.
[7] 黎志恒, 张永军, 梁收运. 兰州城市地质灾害与人类工程活动[J]. 兰州大学学报(自然科学版), 2014, 50(5): 588−593.
LI Zhiheng, ZHANG Yongjun, LIANG Shouyun. Urban geological hazards and human engineering activities in Lanzhou City[J]. Journal of Lanzhou University (Natural Sciences),2014,50(5):588−593.
[8] 李彦娥, 赵振明, 冯卫, 等. 沿黄公路边坡地质灾害破坏模式及风险管控: 以陕西绥德–清涧段为例[J]. 西北地质, 2025, 58(2): 186−196.
LI Yan’e,ZHAO Zhenming,FENG Wei,et al. Geological Hazard Failure Mode and Risk Control of Slopes along the Yellow River Highway: Taking the Suide Qingjian Section in Shaanxi Province as an Example[J]. Northwestern Geology,2025,58(2):186−196.
[9] 李骏, 李状, 苗晋杰, 等. 山西省阳城县北窑村滑坡特征及成因分析[J]. 华北地质, 2025, 48(1): 95−102.
LI Jun, LI Zhuang, MIAO Jinjie, et al. Characteristics and cause analysis of landslide in Beiyao village, Yangcheng County, Shanxi Province[J]. North China Geology,2025,48(1):95−102.
[10] 刘畅, 张平松, 杨为民, 等. 税湾地震黄土滑坡的岩土动力特性及其稳定性评价[J]. 西北地质, 2020, 53(4): 176−185.
LIU Chang, ZHANG Pingsong, YANG Weimin, et al. Geotechnical Dynamic Charateristics and Stability Evaluation of Loess Landslides in Shuiwan Earthquake, Tianshui, Gansu[J]. Northwestern Geology,2020,53(4):176−185.
[11] 龙建辉, 郭文斌, 李萍, 等. 黄土滑坡滑带土的蠕变特性[J]. 岩土工程学报, 2010, 32(7): 1023−1028.
LONG Jianhui, GUO Wenbin, LI Ping, et al. Creep property of soil in sliding zone of loess landslide[J]. Chinese Journal of Geotechnical Engineering,2010,32(7):1023−1028.
[12] 孟晓捷, 张新社, 曾庆铭, 等. 基于加权信息量法的黄土滑坡易发性评价——以1∶5万天水市麦积幅为例[J]. 西北地质, 2022, 55(2): 249−259.
MENG Xiaojie, ZHANG Xinshe, ZENG Qingming, et al. The Susceptibility Evaluation of Loess Landslide Based on Weighted Information Value Method: Taking 1∶50 000 Map of Maiji District of Tianshui City As an Example[J]. Northwestern Geology,2022,55(2):249−259.
[13] 彭建兵, 王启耀, 庄建琦, 等. 黄土高原滑坡灾害形成动力学机制[J]. 地质力学学报, 2020, 26(5): 714−730.
PENG Jianbing, WANG Qiyao, ZHUANG Jianqi, et al. Dynamic formation mechanism of landslide disaster on the Loess Plateau[J]. Journal of Geomechanics,2020,26(5):714−730.
[14] 孙萍萍, 张茂省, 贾俊, 等. 中国西部黄土区地质灾害调查研究进展[J]. 西北地质, 2022, 55(3): 96−107.
SUN Pingping, ZHANG Maosheng, JIA Jun, et al. Geo-hazards Research and Investigation in the Loess Regions of Western China[J]. Northwestern Geology,2022,55(3):96−107.
[15] 唐亚明, 薛强, 毕俊擘, 等. 降雨入渗诱发黄土滑塌的模式及临界值初探[J]. 地质论评, 2013, 59(1): 97−106.
TANG Yaming, XUE Qiang, BI Junbo, et al. Preliminary Study on Loess Landslide Rainfall Triggering Modes and Thresholds[J]. Geological Review,2013,59(1):97−106.
[16] 吴玮江, 王念秦. 黄土滑坡的基本类型与活动特征[J]. 中国地质灾害与防治学报, 2002, 13(2): 38−42.
WU Weijiang, WANG Nianqin. Basic types and active features of loess landslide[J]. The Chinese Journal of Geological Hazard and Control,2002,13(2):38−42.
[17] 许领, 戴福初, 邝国麟, 等. 黄土滑坡典型工程地质问题分析[J]. 岩土工程学报, 2009, 31(2): 287−293.
XU Ling, DAI Fuchu, KUANG Guolin, et al. Analysis of some special engineering-geological problems of loess landslide[J]. Chinese Journal of Geotechnical Engineering,2009,31(2):287−293.
[18] 张常亮, 王阿丹, 邢鲜丽, 等. 侵蚀作用诱发黄土滑坡的机制研究[J]. 岩土力学, 2012, 33(5): 1585−1592.
ZHANG Changliang, WANG Adan, XING Xianli, et al. Research on mechanism of loess landslides caused by erosion[J]. Rock and Soil Mechanics,2012,33(5):1585−1592.
[19] 张茂省, 李同录. 黄土滑坡诱发因素及其形成机理研究[J]. 工程地质学报, 2011, 19(4): 530−540.
ZHANG Maosheng, LI Tonglu. Triggering Factors and Forming Mechanism of Loess Landslides.[J]. Journal of Engineering Geology,2011,19(4):530−540.
[20] 周跃峰, 谭国焕, 甄伟文, 等. 入渗诱发黄土滑坡的力学机制[J]. 岩土力学, 2013, 34(11): 3173−3179+3186.
ZHOU Yuefeng, TAN Guohuan, ZHEN Weiwen, et al. Mechanism of infiltration-induced loess landslides[J]. Rock and Soil Mechanics,2013,34(11):3173−3179+3186.
[21] 张天宇, 李林翠, 刘凡, 等. 基于优化最大熵模型的黄土滑坡易发性评价: 以陕西省吴起县为例[J]. 西北地质, 2025, 58(2): 172−185.
ZHANG Tianyu,LI Lincui,LIU Fan,et al. Evaluation of Loess Landslide Susceptibility Based on Optimised MaxEnt Model: A Case Study of Wuqi County in Shaanxi Province[J]. Northwestern Geology,2025,58(2):172−185.
[22] 朱立峰, 谷天峰, 胡炜, 等. 灌溉诱发黄土滑坡的发育机制研究[J]. 工程地质学报, 2016, 24(4): 485−491.
ZHU Lifeng, GU Tianfeng, HU Wei, et al. The mechanism of irrigation-induced landslides of loess[J]. Developmental Mechanism of Irrigation-induced Loess Landslides[J]. Journal of Engineering Geology,2016,24(4):485−491.
-