Geological Structure Characteristics of the Luliang Basin and Adjacent Areas in Central Yunnan Detected by Audio Magnetotelluric Method
-
摘要:
陆良盆地是云南面积最大的新生代(新近纪)盆地,构造活动活跃。采用音频大地电磁测深对盆地及邻区进行探测分析,有效确定了研究区地下的电性、地质及结构特征。判识断裂20(F1-F20)条,其中曲靖–陆良断裂带(F15-F18)对盆地形态特征影响极大;在盆地地段,判识7条隐伏断裂,并可能在第四纪期间仍具有一定活动性,主边界断裂为盆地东缘断裂,具有显著的正断层活动特征。盆地充填地层从地表到深部可依次划分为第四系和新近系茨营组(N2c1-4 )一段至四段共5层,在剖面上显示其深度超过
1000 m,整个盆地中心深度超过1600 m。确定了盆地结构形态特征,证实了陆良盆地为新生代近SN向的箕状断陷盆地,基底为泥盆系、石炭系和二叠系。实例表明音频大地电磁测深对盆地探测是有效的地球物理方法。Abstract:The Luliang Basin with active tectonics is the largest Cenozoic (Neogene) basin in Yunnan Province.The audio magnetotelluric sounding was effectively used to detect and analyze the underground spatial electrical properties and structural characteristics of the basin and its adjacent areas.Twenty faults (F1-F20) were identified, including the Qujing-Luliang fault belt (F15-F18) that has a great impact on the basin morphology;seven concealed faults in the basin section that probably continue active during the Quaternary period;and the main boundary faults at the eastern edge of the basin characterized by significant normal fault movement.The profile shows that its depth is more than
1000 m, and the depth of the whole basin center is more than1600 m. The strata in the basin from surface to deep has been divided into five layers comprised of the Quaternary and the first to the fourth Members of Neogene Ciying Formation (N2c1-4). The structural and morphological characteristics of the basin suggest that the Luliang basin is a Cenozoic SW trending dustpan fault basin, with Devonian, Carboniferous and Permian basement.The example shows that audio magnetotelluric sounding is an effective geophysical method for basin exploration.-
Key words:
- Luliang Yunnan Province /
- basin /
- audio-frequency magnetotelluric method /
- electrical /
- Fracture
-
-
图 1 研究区地质(a)及区域构造图(b)(据胡雅杰,2012修改)
Figure 1.
图 5 盆地构造单位划分及平面深度等值线图(据胡雅杰,2012修改)
Figure 5.
图 6 陆良盆地的形成演化示意图(据刘树根,1997修改)
Figure 6.
表 1 岩石电性电阻率统计表
Table 1. Statistical table of electrical resistivity of rocks
岩性 测定组数 地层 电阻率ρs(Ω·m) 变化范围 平均值 表层黏土 33 Q 10~132 24 表层黏土 48 N2c 30~233 85 砂石、砾石 12 N2c 134~265 161 砾岩 36 N2c、E3c 4~200 39 砂岩 64 Nh1l、C1w、Pt1 nt 17~436 125 页岩、砂岩 22 E3c 179~365 287 灰岩 64 D2q、P2y 570~ 2016 1 072 白云岩 30 Cd 702~ 2452 1 326 表 2 钻孔测井及地震数据对应茨营组各段的深度统计表
Table 2. Depth statistics for each section of the ciying formation corresponding to logging and seismic data
钻孔 深度(m) 地层 钻孔 深度(m) 地层 钻孔 深度(m) 地层 陆14井 0~290 N2c4 陆11井 0~400 N2c4 陆15井 0~490 N2c4 290~470 N2c3 400~710 N2c3 490~860 N2c3 470~660 N2c2 710~860 N2c2 860~990 N2c2 860~970 N2c1 990~ 1110 N2c1 陆2井 0~370 N2c4 陆9井 0~500 N2c4 陆10井 0~475 N2c4 370~600 N2c3 500~880 N2c3 475~780 N2c3 600~ 1260 N2c2 880~ 1450 N2c2 780~ 1085 N2c2 1260 ~1300 N2c1 1450 ~1630 N2c1 1085 ~1170 N2c1 -
[1] 崔建, 李建明, 居亚娟, 等. 云南陆良盆地茨营组水下扇沉积特征[J]. 石油地质与工程, 2008, 22(2): 4−7. doi: 10.3969/j.issn.1673-8217.2008.02.002
CUI Jian, LI Jianming, JU Yajuan, et al. Sedimentary characteristics of nearshore subaqueous fan of Neogene Ciying Formation in Luliang basin. Yunnan[J]. Petroleum Geology and Engineering,2008,22(2):4−7. doi: 10.3969/j.issn.1673-8217.2008.02.002
[2] 侯宇光, 何生, 唐大卿. 滇东北新生代盆地构造反转与生物气藏的形成[J]. 中南大学学报(自然科学版), 2012, 43(6): 2238−2246.
HOU Yuguang, HE Sheng, TANG Daqing. Tectonic reverse of Cenozoic basins and its relationship with the biogas accumulation in north-east of Yunnan Province[J]. Journal of Central South University (Science and Technology),2012,43(6):2238−2246.
[3] 侯宇光, 何生, 唐大卿. 云南曲靖盆地构造演化及其对生物气成藏条件的控制[J]. 现代地质, 2006, 20(4): 597−604. doi: 10.3969/j.issn.1000-8527.2006.04.011
HOU Yuguang, HE Sheng, TANG Daqing. Tectonic Evolution and Its Effect on the Accumulation Elements of biogas in Qujing Basin, Yunnan[J]. Geoscience,2006,20(4):597−604. doi: 10.3969/j.issn.1000-8527.2006.04.011
[4] 胡雅杰. 陆良盆地茨营组沉积相和气藏特征分析[D]. 2012, 北京: 中国地质大学.
HU Yajie. Analysis of Sedimentary Facies and Characteristics of Gas Reservoir in Citing Formation in LuLiang Basin[D]. Beijing: China University of Geosciences, 2012.
[5] 黄元有, 信太岭, 陈强, 等. EH-4低频模式在楚雄盆地页岩气地质调查中的试验[J]. 云南大学学报, 2017, 39(S2): 30−38.
HUANG Yuanyou, XIN Tailing, CHEN Qiang, et al. Test effect of the EH-4 low frequency model for shale gas geological survey at the Chuxiong Basin, Yunnan[J]. Journal of Yunnan University,2017,39(S2):30−38.
[6] 季风玲. 陆良盆地茨营组流体判别标准分析[J]. 天然气技术, 2009, 3(6): 18−20.
JI Fengling. Fluid Distinguishing Criterion Analysis of Ciying Formation, Luliang Area[J]. Natural Gas Technology,2009,3(6):18−20.
[7] 荆林海, 沈远超. 胶莱盆地北缘遥感信息提取及解译分析[J]. 地质学报, 2001, 35(1): 91−94. doi: 10.3321/j.issn:0001-5717.2001.01.010
JING Linhai, SHEN Yuanchao. Extraction and Interperation for the Northern Marigin of the Jiaolai Basin with Remote Sensing[J]. Geology and Exploration,2001,35(1):91−94. doi: 10.3321/j.issn:0001-5717.2001.01.010
[8] 李卿. 云南曲靖盆地储层地震预测[D]. 成都: 成都理工大学, 2010.
LI Qing. Reservoir seismic prediction in Qujing Basin,Yunnan[D]. Chengdu:Chengdu University of Technology,2010.
[9] 李智, 张志业, 李双建, 等. 南襄盆地地质结构与形成演化[J]. 西北地质, 2022, 55(2): 116−117.
LI Zhi,ZHANG Zhiye,LI Shuangjian,et al. Geology Architecyure and Tectonic Evolution of Nanxiang Basin[J]. Northwestern Geology,2022,55(2):116−117.
[10] 李忠, 肖高强, 许晶. EH-4电导率成像技术和化探综合方法在镇康放羊山铅锌铁矿区勘查中的应用[J]. 云南大学学报, 2017, 39(S2): 105−109.
LI Zhong, XIAO Gaoqiang , XU Jing. EH-4 conductivity imaging and geochemical comprehensive method in Fangyang hill of Zhenkang exploration the application of lead and zinc iron mining area[J]. Journal of Yunnan University,2017,39(S2):105−109.
[11] 李忠, 吴中海, 王金明, 等. 利用EH4音频大地电磁测深仪探测巧家巨型古滑坡及其结构面特征[J]. 地质力学学报, 2021, 27(2): 317−325.
LI Zhong,WU Zhonghai,WANG Jingming,et al. Using EH4 audio magnetotelluric sounder to detect the gigantic Qiaojiapaleo-landslide: Identification of structural surface characteristics[J]. Journal of Geomechanics,2021,27(2):317−325.
[12] 刘树根, 戴苏兰, 赵永胜, 等. 云南盆地的形成与演化[J]. 成都理工学院学报, 1997, 24(4): 9−22.
LIU Shugen, DAI Sulan, ZHAO Yongsheng, et al. The Formation and Evolution of Luliang Basin in Yunnan Province[J]. Journal of Chengdu Uninersity of Technology,1997,24(4):9−22.
[13] 吕儒明, 陈宗太, 伍佳明, 等. 陆良盆地陆9块上第三系茨营组地震相研究[J]. 石油天然气学报, 2005, 27(5): 566−568. doi: 10.3969/j.issn.1000-9752.2005.05.008
LV Ruming, CHEN Zongtai, WU Jiaming, et al. Study on Seismic Facies of the Upper Tertiary Ciying Formation in Lu 9 Block, Luliang Basin[J]. Journal of Oil and Gas Technology,2005,27(5):566−568. doi: 10.3969/j.issn.1000-9752.2005.05.008
[14] 秦帮策, 方维萱, 张建国, 等. 汾河裂谷晋中盆地内第四纪沉积序列与沉积环境恢复[J]. 地质力学学报, 2021, 27(6): 1035−1050. doi: 10.12090/j.issn.1006-6616.2021.27.06.084
QIN Bangce, FANG Weixuan, ZHANG Jianguo, et al. Quaternary sedimentary sequence and sedimentary environment restoration in the Jinzhong Basin, Fenhe rifit vally[J]. Journal of Geomechanics,2021,27(6):1035−1050. doi: 10.12090/j.issn.1006-6616.2021.27.06.084
[15] 王桥, 杨剑, 夏时斌, 等. 四川盆地新区新层系页岩气的音频大地电磁探测-以川西南乐山地区须家河组为例[J]. 地质学报, 2020, 96(2): 699−711.
WANG Qiao, YANG Jian, XIA Shibin, et al. Audio magnetotelluric detection of shale gas in the new horizon of the area of Sichuan basin: a case study of the Xujiahe Formation in the Leshan area, southwest Sichuan[J]. Acta Geoloica Sinica,2020,96(2):699−711.
[16] 王伟平, 姚永坚, 蔡周荣, 等. 中建南盆地后扩张期T5和T3不整合面的发育特征及对南海科学钻探的意义[J]. 地质学报, 2022, 96(8): 2822−2832.
WANG Weiping, YAO Yongjian, CAI Zhourong, et al. Characteristics of unconformity T5 and T3 in the Zhongjiangnan basin and their significance for scientific drilling in the South China Sea during the post-spreading period[J]. Acta Geologica Sinica,2022,96(8):2822−2832.
[17] 肖朝阳, 黄强太, 张绍阶, 等. EH4电磁成像系统在金矿勘探中的应用—以黄金洞金矿为例[J]. 大地构造与成矿学, 2011, 35(2): 242−248.
XIAO Zhaoyang, HUANG Qiangtai, ZHANG Shaojie, et al. Application of EH4 Electromagnetic Image Sytemin Mineral Resource Exploraion -An Example from the Huangjindong Gold Ore Deposit[J]. Geotectonicaet Metallogenia,2011,35(2):242−248.
[18] 曾普胜, 李华, 朱晓华, 等. 云南曲靖盆地蔡家冲粗面英安质泥灰岩—扬子克拉通内曲靖深大断裂新生代强烈活动的证据[J]. 地质通报, 2015, 34(10): 1826−1836. doi: 10.3969/j.issn.1671-2552.2015.10.007
ZENG Pusheng, LI Hua, ZHU Xiaohua, et al. Trachytic dacitic tuffs in Caijiachong Qujing basin, Yunnna province: Evidence for a strong activity of the Qujing deep fault within the Yangtze Craton.[J]. Geological Bulletin of China,2015,34(10):1826−1836. doi: 10.3969/j.issn.1671-2552.2015.10.007
[19] 张建成, 王通. EH4电磁法在深埋滑坡变形体探测中的应用[J]. 工程勘察, 2015, 43(2): 94−98.
ZHANG Jiancheng, WANG Tong. Application of EH4 conductivity imaging system in exploration of deep buried landslide deformation[J]. Geotechnical Investigation & Surveying,2015,43(2):94−98.
[20] 赵俊, 向龙洲, 李忠, 等. 综合物探在水文地质调查中的应用及适用性分析[J]. 云南大学学报, 2017, 39(S2): 110−115.
ZHAO Jun, XIANG Longzhou, LI Zhong, et al. Application and applicability analysis of comprehensive geophysical prospecting in hydrogeological survey[J]. Journal of Yunnan University,2017,39(S2):110−115.
[21] 周道卿, 曹宝宝, 赵睿, 等. 羌唐盆地高精度航空重磁调查对盆地基底性质与构造格局的启示[J]. 地质学报, 2020, 95(11): 3178−3191. doi: 10.3969/j.issn.0001-5717.2020.11.002
ZHOU Daoqing, CAO Baobao, ZHAO Rui, et al. High-precision airborne gravity and magnetic survey analysis of the Qiangtang basin: implications for basin basement properties and tectonic framework[J]. Acta Geologica Sinica,2020,95(11):3178−3191. doi: 10.3969/j.issn.0001-5717.2020.11.002
-