Application of Integrated Geophysical Prospecting Method in Steep Seam Goaf: A Case Study of The Closed Coal Mine in Xishan Area, Urumqi
-
摘要:
城市边缘关闭煤矿遗留下的大量采空区严重威胁生产生活安全,查明采空区的分布情况是进行治理工作的前提和基础。笔者以乌鲁木齐市西山地区关闭煤矿急倾斜煤层采空区为研究对象,综合分析采空区及围岩地质特征、干扰背景,常用物探方法抗干扰性、适用性和局限性,优选高密度电法、微动勘探、等值反磁通瞬变电磁和重力4种方法进行综合物探勘查,在区内查明两条采空区带,向深部延伸50~450 m,均处于充水状态,经钻探验证结果可靠。总结了“低阻–低速”、“高阻–低速”、“低重–低速”等参数组合与采空区不同赋存状况的对应关系,说明笔者提出的方法技术组合可在类似采空区探测中发挥作用。
Abstract:A large number of goafs left behind by the closed coal mines at the edge of cities seriously threaten the safety of production and life. Finding out the distribution of goafs is the premise and basis for governance. This paper takes the goaf of steep coal seam in Xishan area of Urumqi as the research target, comprehensively analyzes the geological characteristics and interference background of the goaf and surrounding rock, the anti-interference, applicability and limitations of common geophysical methods, and selects four methods for integrated geophysical exploration: multi-electrode resistivity method, microtremor survey(MS), opposing coils transient electromagnetic(OCTE) and gravity exploration. Two goaf zones were found in the area, extending 50-450 m to the depth, both in a water filled state and proved reliable by drilling. The corresponding relationship between the parameter combinations of "low resistance low speed", "high resistance low speed", "low weight low speed" and different occurrence conditions of goaf is summarized. It shows that the method and technology combination proposed in this paper can play a role in similar goaf detection.
-
-
图 1 研究区大地构造位置图(a)(孙自明,2015)和地质图(b)
Figure 1.
表 1 急倾斜煤层特点及其采空区特征对照表
Table 1. Comparison table of characteristics of steep seam seams and goaf
序号 急倾斜煤层特征 对应采空区特点 1 埋深大,基岩或煤层上部覆盖层密实度差,黄土湿陷严重 覆盖层极易随下部采空区发展而发生垮塌,稳定性较差,难以在地表形成稳定“拱”,沿走向方向出现条带状或串珠状塌陷坑 2 多为不稳定复杂煤层,厚度变化大,通常各种厚度煤层(薄、中厚、厚及特厚)均有分布 采空区在顶板方向变形普遍较剧烈,采空宽度通常大于煤层厚度 3 产状复杂,倾角变化较大,煤层分布沿倾向方向向地下延伸深度较大,可采煤层自煤层露头延伸至地下上千米范围 随着煤层开采深度不断增大,采空区范围逐渐向顶板方向发展,而底板方向基本处于稳定状态,采空区平面分布呈不对称状态。采空区竖向上深度和厚度分布范围较大, 自然垮落时间变化较大,稳定时间漫长 4 地下水在竖向分布上连续性好,平面分布连续性差;由于产状陡倾,不同煤层间水力联系少,煤矿开采受地下水影响相对较小 由于上部未采煤层和顶底板垮落的双重影响,采空区实际都分布有充填物,因富水状况不同导致充填状况复杂,无明显规律 表 2 研究区地层岩性物性参数统计表
Table 2. Statistic table of physical parameters of formation lithology in the research area
地层 岩性 电阻率(Ω·m) 纵波速(m/s) 方法 变化范围 常见值 变化范围 常见值 Q 砂砾石土 200~250 250 1200 ~1500 1500 统计测井成果 J 泥岩 30~60 30 2500 ~3500 2500 泥质粉砂岩 30~150 75 1500 ~3500 3000 粉砂岩 60~130 105 2 000~ 4000 3000 细砂岩 60~150 130 3000 ~4000 3200 砂岩 40~250 150 3000 ~4500 3500 煤层 65~250 180 1000 ~3000 2000 采空区 <15 < 1000 表 3 投入主要物探仪器信息表
Table 3. Information table of the main geophysical instrument
序号 设备名称 型号 产地 1 瞬变电磁仪 Terra TEM 美国LAUREL(劳雷)公司 2 高密度电法仪 DUK-4 重庆地质仪器厂 3 高精度重力仪 CG-5 加拿大scintrex(先达利)公司 4 智能微动勘探系统 CN209 中科大国为 5 等值反磁通瞬变电磁仪 HPTEM-18 湖南五维地质科技有限公司 表 4 各方法主要施工参数及资料处理解释
Table 4. Acquisition parameters and data processing and interpretation
探测方法 主要施工参数 资料处理解释 高密度电阻率法 采集装置:维纳(对称四极)装置;
供电电压:220~300 V;供电时间:0.5 s;
停供时间:0.1 s;电极距:10 m;
测线5长度:500~1100 m坏点剔除、加载地形、视电阻率
反演、网格化成图等微动探测 矩阵类型:十字型;矩阵半径:50 m;
检波器频率:2 Hz;采集频率250 Hz;
采集时间:25 min以上;点距:10 mSPAC法提取频散曲线、半波法经验公式反演、
数据拼接、加载地形等重力 测量方式:采用单程观测法,
早基点–测点–晚基点观测流程,当天闭合;
单点读数时间:45 s;点距:10 m地形改正,高度改正及布格改正,布格重力
异常计算,区域场和剩余重力异常分离等值反磁通瞬变电磁 采集模式:定点模式;发射频率:0.625 Hz;
发射电流:10.5 A;关断时间:65 μs;
叠加次数:200次;重复观测:2次;点距:5~10 m数据剔除、编辑等预处理,抽道,
二维反演,网格化,二、三维显示 -
[1] 蔡有良, 吴文贤, 彭清华, 等. 等值反磁通瞬变电磁和微动法在内蒙古某萤石矿采空区探测中的应用效果浅析[J]. 工程地球物理学报, 2022, 19(4): 459−465.
CAI Youliang, WU Wenxian, PENG Qinghua, et al. Analysis on The Application Effect of Comprehensive Geophysical Prospecting Method in Goaf Detection of A Fluorite Mine in Inner Mongolia[J]. Chinese Journal of Engineering Geophysics,2022,19(4):459−465.
[2] 陈实, 刘云祯, 李延清, 等. 综合物探技术在城市活动断裂调查中的应用—以乌鲁木齐八钢石化断裂为例[J]. 地球物理学进展, 2019, 34(4): 1584−1591. doi: 10.6038/pg2019CC0230
CHEN Shi,LIU Yunzhen,LI Yanqing,et al. Application of Integrated Geophysical Techniques in Investigation of Urban Active Faults: Take Rümqi Bagangshihua Fracture as An Example[J]. Progress in Geophysics,2019,34(4):1584−1591. doi: 10.6038/pg2019CC0230
[3] 陈卫营, 薛国强. 瞬变电磁法多装置探测技术在煤矿采空区调查中的应用[J]. 地球物理学进展, 2013, 28(5): 2709−2717. doi: 10.6038/pg20130554
CHEN Weiying,XUE Guoqiang. Application on Coal-mine Voids Detection with Multi-device TEM Technology[J]. Progress in Geophysics,2013,28(5):2709−2717. doi: 10.6038/pg20130554
[4] 陈中山, 殷全增, 耿丽娟, 等. 关闭小煤矿采空区地面探测方法优选[J]. 地球物理学进展, 2022, 37(1): 367−373. doi: 10.6038/pg2022FF0138
CHEN Zhongshan,YIN Quanzeng,GENG Lijuan,et al. Optimization of Ground Detection Method for Small Closed Coal Mine[J]. Progress in Geophysics,2022,37(1):367−373. doi: 10.6038/pg2022FF0138
[5] 程久龙, 胡克峰, 王玉和, 等. 探地雷达探测地下采空区的研究[J]. 岩土力学, 2004, 25(S1): 79-82.
CHENG Jiulong, HU Kefeng, WANG Yuhe, et al. Research on Detecting of Underground Mined-out Areas by Using GPR[J]. Rock and Soil Mechanics, 2004, 25(S1): 79-82.
[6] 程久龙, 潘冬明, 李伟, 等. 强电磁干扰区灾害性采空区探地雷达精细探测研究[J]. 煤炭学报, 2010, 35(2): 227−231. doi: 10.13225/j.cnki.jccs.2010.02.017
CHENG Jiulong, PAN Dongming, LI Wei, et al. Study on The Detecting of Hazard Abandoned Workings by Ground Penetrating Radar on Strong Electromagnetic Interference Area[J]. Journal of China Coal Society,2010,35(2):227−231. doi: 10.13225/j.cnki.jccs.2010.02.017
[7] 方军, 王乐杰. 急倾斜煤层老采空区物探方法探讨[J]. 矿山测量, 2016, 44(4): 90−94.
FANG Jun, WANG Lejie. Discussion on The Exploration Techniques in Steep Inclined Seams of The Abandoned Goaf Areas[J]. Mine Surveying,2016,44(4):90−94.
[8] 杜臻, 张茂省, 冯立, 等. 鄂尔多斯盆地煤炭采动的生态系统响应机制研究现状与展望[J]. 西北地质, 2023, 56(3): 78−88.
DU Zhen, ZHANG Maosheng, FENG Li, et al. Research Status and Prospect of Ecosystem Response Mechanism to Coal Mining in Ordos Basin[J]. Northwestern Geology,2023,56(3):78−88.
[9] 范涛, 王秀臣, 李貅, 等. 瞬变电磁方法在探测煤矿浅层高阻采空区中的应用[J]. 西北地质, 2010, 43(2): 156−162.
FAN Tao, WANG Xiuchen, LI Xiu, et al. Application of TEM in Detecting Goaf of Coal Mine with High-resistivity and Shallow-layer[J]. Northwestern Geology,2010,43(2):156−162.
[10] 韩许恒, 郁春霞. 氡射气探测在采空区勘察中的应用[J]. 工程勘察, 1996(5): 62−66+72.
HAN Xuheng, YU Chunxia. Application of Radon Emission Detection in Goaf Exploration[J]. Geotechnical Investigation & Surveying,1996(5):62−66+72.
[11] 冯立, 张鹏飞, 张茂省, 等. 新时期榆林煤矿区生态保护修复与综合治理策略及路径探索[J]. 西北地质, 2023, 56(3): 19−29.
FENG Li, ZHANG Pengfei, ZHANG Maosheng, et al. Strategies and Practical Paths for Ecological Restoration and Comprehensive Management in Yulin Coal Mining Area in the New Era[J]. Northwestern Geology,2023,56(3):19−29.
[12] 何继善, 李帝铨, 胡艳芳, 等. 城市强干扰环境地下空间探测技术与应用[J]. 工程地球物理学报, 2022, 19(5): 559−567.
HE Jishan, LI Diquan, HU Yanfang, et al. Geophysical Exploration Methods for Strong Interference Urban Underground Space[J]. Chinese Journal of Engineering Geophysics,2022,19(5):559−567.
[13] 贺阳阳. 新疆乌市104团急倾斜煤层采空区稳定性及失稳过程分析[D]. 西安: 西安科技大学, 2020.
HE Yangyang. Stability and Instability Process Analysis of Steep Coal Seam of No. 104 Group in Xinjiang[D]. Xi’an: Thesis for Master’s Degree of Xi’an University of Science Technology, 2020.
[14] 黄光明, 赵举兴, 李长安, 等. 岩溶区地下溶洞综合物探探测试验研究—以福建省永安大湖盆地为例[J]. 地球物理学进展, 2019, 34(3): 1184−1191. doi: 10.6038/pg2019DD0145
HUANG Guangming,ZHAO Juxing,LI Chang’an,et al. Detection of Underground Karst Caves by Comprehensive Geophysical Exploration in Karst Area: Taking Yongan Dahu Basin in Fujian Province as Example[J]. Progress in Geophysics,2019,34(3):1184−1191. doi: 10.6038/pg2019DD0145
[15] 胡天义, 刘欢, 何威荣, 等. 微动勘探在黑土地地表基质调查中的应用——以莫旗为例[J]. 华北地质, 2024, 47(4): 80−90.
HU Tianyi, LIU Huan, HE Weirong, et al. Application of microtremor exploration in surface matrix survey of black land:a case study of Moqi[J]. North China Geology,2024,47(4):80−90.
[16] 孔繁良, 徐超, 李军. 高密度电法在新疆某水库大坝病险隐患探测中的应用[J]. 工程地球物理学报, 2022, 19(1): 16−20.
KONG Fanliang, XU Chao, LI Jun. Application of Multi-electrode Resistivity Method in Detection of Hidden Dangers of A Reservoir Dam in Xinjiang[J]. Chinese Journal of Engineering Geophysics,2022,19(1):16−20.
[17] 雷旭友, 李正文, 折京平. 超高密度电阻率法在土洞、煤窑采空区和岩溶勘探中应用研究[J]. 地球物理学进展, 2009, 24(1): 340−347.
LEI Xunyou, LI Zhengwen, ZHE Jingping. Applications and research of the high resolution vesistivity method in caves‚mined vegion and explovation of Karst region[J]. Progress in Geophysics,2009,24(1):340−347.
[18] 李文. 煤矿采空区地面综合物探方法优化研究[J]. 煤炭科学技术, 2017, 45(1): 194−199.
LI Wen. Optimization Study of Surface Comprehensive Geophysical Detection Methods of Coal Mine Goafs[J]. Coal Science and Technology,2017,45(1):194−199.
[19] 蔺楠, 陈莹, 马露, 等. 陕北煤炭基地矿山生态修复成效评估体系构建与实现[J]. 西北地质, 2023, 56(3): 89−97.
LIN Nan, CHEN Ying, MA Lu, et al. Construction and Implementation of Evaluation System for Ecological Restoration Effectiveness of Mines in Northern Shaanxi Coal Base[J]. Northwestern Geology,2023,56(3):89−97.
[20] 刘小平. 我国建(构)筑物场地下伏煤矿采空区勘察技术进展[J]. 煤田地质与勘探, 2022, 50(4): 139−146. doi: 10.12363/issn.1001-1986.21.05.0299
LIU Xiaoping. Progress in investigation technology for coal mine goafs under buildings and structures in China[J]. Coal Geology & Exploration,2022,50(4):139−146. doi: 10.12363/issn.1001-1986.21.05.0299
[21] 刘学军, 刘震, 杨镜明. 大埋深巨厚急倾斜煤层采空区勘察手段探索[J]. 工程勘察, 2018, (增刊1): 386−392.
LIU Xuejun, LIU Zhen, YANG Jingming. The Research on The Exploration Means of Deep and Extra-thick Coal Seam Mining Area[J]. Geotechnical Investigation & Surveying, 2018, (Sup. 1): 386−392.
[22] 罗霄, 徐智海, 李正胜, 等. 多参数综合物探方法在煤矿采空区勘探中的应用研究[J]. 煤炭工程, 2020, 52(2): 32−37.
LUO Xiao, XU Zhihai, LI Zhengsheng, et al. Application of Multi-parameter Comprehensive Geophysical Prospecting Method in Exploration of Goaf in Coal Mines[J]. Coal Engineering,2020,52(2):32−37.
[23] 屈栓柱, 唐宝山, 张海珠, 等准 噶尔盆地南缘盆地轮廓和构造属性及页岩气战略选区的重磁电勘探研究[J]. 地质评论, 2019, 65(6): 1288−1298. doi: 10.16509/j.georeview.2019.05.017
QU Shuanzhu,TANG Baoshan,ZHANG Haizhu,et al. Study on The Shape and Structural Properties of The Southern Margin of Junggar Basin and The Potential Shale-Gas Strategic Deposit with Integrated Geophysical Methods[J]. Geological Review,2019,65(6):1288−1298. doi: 10.16509/j.georeview.2019.05.017
[24] 宋贵磊, 公绪飞, 杨富强, 等. 含水采空区瞬变电磁时空响应特征研究及应用[J]. 煤田地质与勘探, 2024, 52(12): 201−212. doi: 10.12363/issn.1001-1986.24.04.0247
SONG Guilei,GONG Xufei,YANG Fuqiang,et al. Spatiotemporal response characteristics of transient electromagnetic fieldin water-bearing goaves and their applications[J]. Coal Geology & Exploration,2024,52(12):201−212. doi: 10.12363/issn.1001-1986.24.04.0247
[25] 苏永军, 胡婷, 曹占宁, 等. 基于高密度电阻率法的雄安新区填埋坑塘探测效果分析[J]. 华北地质, 2023, 46(4): 70−75.
SU Yongjun, HU Ting, CAO Zhanning, et al. Analysis of detection effect of landfill pond by the high density resistivity method in Xiong’an New Area[J]. North China Geology,2023,46(4):70−75.
[26] 孙自明, 王毅. 新疆博格达山西缘米泉地区构造解析与建模[J]. 现代地质, 2015, 28(2): 300−307.
SUN Ziming, WANG Yi. Structural Analysis and Modeling in Miquan Area of The Western Margin of the Bogda Mountain, Xinjiang[J]. Geoscience,2015,28(2):300−307.
[27] 汤伏全, 李庚新, 原一哲. 煤矿采空区地表重力异常效应模拟研究[J]. 煤炭学报, 2018, 43(4): 945−950. doi: 10.13225/j.cnki.jccs.2017.1578
TANG Fuquan,LI Gengxin,YUAN Yizhe. Simulation And Study on Ground Gravity Anomaly Effect in Goaf of Coal Mine[J]. Journal of China Coal Society,2018,43(4):945−950. doi: 10.13225/j.cnki.jccs.2017.1578
[28] 王亮, 龙霞, 王婷婷, 等. 等值反磁通瞬变电磁法在城市浅层空洞探测中的应用[J]. 物探与化探, 2022, 46(5): 1289−1295. doi: 10.11720/wtyht.2022.1467
WANG Liang, LONG Xia, WANG Tingting, et al. Application of the opposing-coils transient electromagnetic method in detection of urban shallow cavities[J]. Geophysical and Geochemical Exploration,2022,46(5):1289−1295. doi: 10.11720/wtyht.2022.1467
[29] 王强, 田野, 刘欢, 等. 综合物探方法在煤矿采空区探测中的应用[J]. 物探与化探, 2022, 46(2): 531−536.
WANG Qiang, TIAN Ye, LIU Huan, et al. Application of Comprehensive Geophysical Prospecting in Investigation of Coal Mine Goaves[J]. Geophysical and Geochemical Exploration,2022,46(2):531−536.
[30] 王亚辉, 张茂省, 师云超, 等. 基于综合物探的城市地下空间探测与建模[J]. 西北地质, 2019, 52(2): 83−94.
WANG Yahui, ZHANG Maosheng, SHI Yunchao, et al. Precise Detection and Modeling of Urban Underground Space Based on Integrated Geophysical Exploration[J]. Northwestern Geology,2019,52(2):83−94.
[31] 王双明, 孙强, 袁士豪, 等. 论煤–水–土多资源协调开发[J]. 西北地质, 2024, 57(5): 1−10.
WANG Shuangming,SUN Qiang,YUAN Shihao,et al. On the Coordinated Development of Coal-Water-Soil Multiple Resources[J]. Northwestern Geology,2024,57(5):1−10.
[32] 吴飞, 陈海波. 微动探测技术在安徽某煤矿采空区的应用[J]. 能源技术与管理, 2021, 46(5): 141−144.
WU Fei, CHEN Haibo. The Application of Microtremor Survey Technology in A Coal Mine Goaf in Anhui Province[J]. Energy Technology and Management,2021,46(5):141−144.
[33] 武欣, 潘冬明, 于景邨. 煤矿采空区地球物理探测方法综述[J]. 地球物理学进展, 2022, 37(3): 1197−1206. doi: 10.6038/pg2022GG0128
WU Xin,PAN Dongming,YU Jingcun. Review in the geophysical methods for coalmine goaf prospecting[J]. Progress in Geophysics,2022,37(3):1197−1206. doi: 10.6038/pg2022GG0128
[34] 席振铢, 龙霞, 周胜, 等. 基于等值反磁通原理的浅层瞬变电磁法[J]. 地球物理学报, 2016, 59(9): 3428−3435.
XI Zhenzhu, LONG Xia, ZHOU Sheng, et al. Opposing coils transient electromagnetic method for shallow subsurface detection[J]. Chinese Journal of Geophysics,2016,59(9):3428−3435.
[35] 徐慧, 牟义, 杨思通, 等. 榆林地区浅埋煤层采空区电法综合勘探技术[J]. 地质与勘探, 2020, 56(4): 792−801.
XU Hui,MU Yi,YANG Sitong,et al. Comprehensive Exploration Technology Based on The Electric Methods for The Goaf of Shallow Coal Seams in The Yulin Area[J]. Geology and Exploration,2020,56(4):792−801.
[36] 严加永, 孟贵祥, 吕庆田, 等. 高密度电法进展与展望[J]. 物探与化探, 2012, 36(4): 576−584.
YAN Jiayong, MENG Guixiang, LV Qingtian, et al. The progress and prospect of the electrical resistivity imaging survey[J]. Geophysical & Geochemical Exploration,2012,36(4):576−584.
[37] 姚建强, 毛玉坤. 新疆公路急倾斜煤矿采空区处理施工工法[J]. 山西建筑, 2018, 44(6): 56−58. doi: 10.3969/j.issn.1009-6825.2018.06.028
YAO Jianqiang, MAO Yukun. Xinjiang Highway Steeply Inclined Coal Mining Area Treatment Construction Method[J]. Shanxi Architecture,2018,44(6):56−58. doi: 10.3969/j.issn.1009-6825.2018.06.028
[38] 张健桥, 尹维民, 张兴洲. 综合物探方法在厚覆盖煤矿采空区探测中的应用[J]. 地质论评, 2021, 66(增1): 51−53.
ZHANG Jianqiao, YIN Weimin, ZHANG Xingzhou. Application of Comprehensive Geophysical Prospecting Method in Detecting Goaf of Thick Overburden Coal Mine[J]. Geological Review,2021,66(supp.1):51−53.
[39] 张旭, 杜晓娟, 苏超, 等. 辽源煤矿采空区重力异常解释研究[J]. 工程地球物理学报, 2015, 12(6): 755−759.
ZHANG Xu, DU Xiaojuan, SU Chao, et al. Gravity Anomaly Interpretation of Mined-out Area in Liaoyuan Coal[J]. Chinese Journal of Engineering Geophysics,2015,12(6):755−759.
[40] 张昭, 殷全增. 不同年限采空区下地震勘探效果实例研究[J]. 煤田地质与勘探, 2021, 49(6): 237−242. doi: 10.3969/j.issn.1001-1986.2021.06.028
ZHANG Zhao,YIN Quanzeng. Case study on the effects of seismic exploration beneath the goafs of different ages[J]. Coal Geology & Exploration,2021,49(6):237−242. doi: 10.3969/j.issn.1001-1986.2021.06.028
[41] 赵东东, 张宝松, 宗全兵, 等. 综合物探方法在地铁孤石探测中的应用研究[J]. 地球物理学进展, 2022, 37(3): 1360−1370. doi: 10.6038/pg2022FF0181
ZHAO Dongdong,ZHANG Baosong,ZONG Quanbing,et al. Application of integrated geophysical method to detection of boulder in subway shield zone[J]. Progress in Geophysics,2022,37(3):1360−1370. doi: 10.6038/pg2022FF0181
[42] 赵虎, 王玲辉, 程强, 等. 等值反磁通瞬变电磁成像技术及工程应用[J]. 地球物理学进展, 2021, 36(5): 2244−2250. doi: 10.6038/pg2021EE0466
ZHAO Hu,WANG Linghui,CHENG Qiang,et al. Opposing coils transient electromagnetics imaging technology and engineering application[J]. Progress in Geophysics,2021,36(5):2244−2250. doi: 10.6038/pg2021EE0466
[43] 赵子锋. 高速公路下伏急倾斜采空区勘察技术及对路基稳定影响研究[D]. 西安: 长安大学, 2015.
ZHAO Zifeng. Study on Survey Technology of the Steep Goaf under Expressway and Its Impact on Stability of Embankment[D]. Xi’an: Chang’an University, 2015.
[44] Okada H. Theory ofefficient array observations of Microtremors with special reference to the SPAC Method[J]. Exploration Geophysics,2006,37(1):73−85. doi: 10.1071/EG06073
-