Application of Integrated Electrical Prospecting in Carbonaceous Rock Series of Xinjiazui Gold Deposit
-
摘要:
秦岭地区辛家咀金矿位于陕西汉中“勉略宁金三角”地带西侧,区域金成矿潜力突出。但由于区内广泛分布含碳地层,对传统物化探手段均造成一定干扰。本次研究通过音频大地电磁测深法(AMT)及激发极化法等综合电法勘探的应用,查明了辛家咀金矿控矿断裂深部形态特征,探索含碳地层金矿深部找矿预测技术方法组合,探讨成矿机制并总结赋矿标志。综合电法勘探可获得研究区深部电性结构特征,从而对含碳岩系干扰下金矿深部赋存位置进行定位预测并形成赋矿标志,经深部工程验证取得区域找矿新发现,也对研究区成矿机制提出新认识。
Abstract:The Xinjiazui gold deposit in Qin-ling area is located in the west of Mianluoning Golden Triangle in Hanzhong, Shaanxi Province, This gold deposit has great metallogenic potential. However, Carbon-bearing strata are widely distributed in the area, the traditional geophysical and geochemical exploration methods are interfered to some extent. In this paper, through the application of integrated electrical exploration such as audio magneto-telluric sounding (AMT) and induced polarization(IP) method, the deep morphological characteristics of ore-controlling fault in Xinjiazu gold deposit are identified, the combination of deep prospecting prediction technology and method for gold deposits in carbon-bearing strata is explored, the metallogenic mechanism is discussed and the ore deposit markers are summarized. Comprehensive electrical exploration can obtain the deep electrical structure characteristics of the study area, so as to locate and predict the deep occurrence location of gold deposits under the interference of carboniferous rock series and form the ore deposit markers. New discoveries of regional prospecting have been obtained through the deep engineering verification, and the metallogenic mechanism of the study area is proposed.
-
-
表 1 测区主要岩石电性参数统计表
Table 1. Statistical table of main rock electrical parameters in the test area
地层 岩性 块数 电阻率(Ω·m) 充电率(ms) 均值 最大值 最小值 均值 最大值 最小值 志留系
黄坪组千枚岩 34 1488 4182 245 2.93 3.9 2.4 铁质菱镁矿千枚岩 33 2005 3260 593 7.32 8.87 5.9 石英脉 41 285310 1072806 770 7.7 17.15 0.89 寒武系
牛蹄塘组粉砂质板岩 39 237 937 113.5 2.9 4.2 1.9 硅质板岩 29 647 4380 61.4 4.4 12.2 1.5 含碳硅质板岩 33 103 318 8.3 74 169.7 22.3 碳质板岩 32 21.7 39.1 8.5 49 87 24.3 -
[1] 陈剑祥, 高福平, 卫中弟, 等. 陕西宁强县青木川-旧房梁一带典型金矿床特征、控矿因素及找矿标志[J]. 新疆有色金属, 2013, 36(2): 15−18.
CHEN Jianxiang, GAO Fuping, WEI Zhongdi, et al. Characteristics, ore-controlling factors and prospecting criteria of typical gold deposits in Qingmuchuan-Jiufangliang area, Ningqiang County, Shaanxi Province[J]. Xinjiang Youse Jinshu,2013,36(2):15−18.
[2] 陈少锋, 白文龙. 陕西丁家山金矿围岩蚀变特征及其与金矿化的关系[J]. 矿产勘查, 2019, 10(10): 2506−2512.
CHEN Shaofeng, BAI Wenlong. Alteration characteristics of surrounding rock of Dingjiashan gold mine and its relationship with gold mineralization, Shaanxi[J]. Mineral Exploration,2019,10(10):2506−2512.
[3] 冯伟华, 佘鹏涛, 彭海练, 等. 陕西小秦岭金矿成矿流体特征及成矿过程研究[J]. 西北地质, 2021, 54(2): 149−156.
FENG Weihua, SHE Pengtao, PENG Hailian, et al. Study on the Ore-forming Fluid Characteristics and Process in Xiaoqinling Gold Deposit, Shaanxi Province[J]. Northwestern Geology,2021,54(2):149−156.
[4] 付于真, 方维萱, 刘家军, 等. 陕川丁家林-太阳坪-董家院金矿带的矿田构造-岩相学研究[J]. 大地构造与成矿学, 2014, 38(4): 787−801.
FU Yuzhen, FANG Weixuan, LIU Jiajun, et al. Characteristics of Tectonic Lithofacies in Dingjialin-Taiyangping- Dongjiayuan Gold Ore Belt, Shaanxi and Sichuan Provinces[J]. Geotectonica et Metallogenia,2014,38(4):787−801.
[5] 郭镜, 焦彦杰, 梁生贤, 等. 扎西康多金属矿含碳质岩石中赋矿断裂带的电性变化及找矿意义[J]. 成都理工大学学报(自然科学版), 2019, 46(4): 471−481.
GUO Jing, JIAO Yanjie, LIANG Shengxian, et al. Electrical variation of carbonaceous rocks in ore-bearing fault zone and its prospecting significance, in Zhaxikang Pb-Zn-Sb polymetallic ore deposit, Tibet, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2019,46(4):471−481.
[6] 胡旭. 音频大地电磁法在地热勘查中的应用研究[D]. 四川: 成都理工大学, 2019.
HU Xu. Application of audio frequency magneto telluric method in geothermal exploration[D]. Sichuan: Chengdu University of Technology, 2019.
[7] 焦彦杰, 梁生贤, 郭镜. 西藏桑日则黑色岩系构造热液型铅锌矿定位预测研究[J]. 地球物理学进展, 2017, 32(2): 634−639.
JIAO Yanjie, LIANG Shengxian, GUO Jing. Research on the prediction of Tibet Sangrize black rock series positioning structure hydrothermal type Pb Zn ore[J]. Progress in Geophysics,2017,32(2):634−639.
[8] 李富, 李华. 综合地球物理方法在某铅锌矿勘查中的应用[J]. 现代矿业, 2009, 25(2): 97−99.
LI Fu, LI Hua. Application of integrated geophysical method in the exploration of a Lead-zinc deposit[J]. Modern Mining,2009,25(2):97−99.
[9] LIAO Shili. The characteristics of gold mineralization and prospecting direction of Qingmuchuan一Cangshe, Shaanxi Province[D]. Beijing:China University of Geosciences, 2011.
LIAO Shili. The characteristics of gold mineralization and prospecting direction of Qingmuchuan一Cangshe, Shaanxi Province[D]. Beijing:China University of Geosciences, 2011.
[10] 廖时理, 陈守余, 张利亚, 等. 陕西青木川—苍社地区韧性剪切带型金矿床地球化学特征及地质意义[J]. 中南大学学报(自然科学版), 2015, 46(3): 1082−1093.
LIAO Shili, CHEN Shouyu, ZHANG Liya, et al. Geochemistry and its geological significance of gold deposits in ductile shear zone of Qingmuchuan-Cangshe area, Shaanxi[J]. Journal of Central South University (Science and Technology),2015,46(3):1082−1093.
[11] 刘基, 杨可, 张晓星, 等. 后龙门山造山带辛家咀金矿床地质特征及成因探讨[J]. 现代地质, 2022, 36(1): 378−388.
LIU Ji, YANG Ke, ZHANG Xiaoxing, et al. Geological Characteristics and Genesis of the Xinjiazui Gold Deposit in Back-Longmenshan Orogenic Belt[J]. Geoscience, 2022, 36(1): 378−388.
[12] 刘连登, 姚风良, 卿敏, 等. 中国的金矿与韧性剪切带[J]. 黄金科技动态, 1991, 3(1): 7−12.
LIU Liandeng, YAO Fengliang, QING Min, et al. Gold deposits and ductile shear zones in China[J]. Gold Science and Technology trends,1991,3(1):7−12.
[13] 柳少波, 刘连登, 刘晨. 论金厂峪后韧性剪切带金矿床及其成因[J]. 长春地质学院学报, 1993, 23(3): 286−291.
LIU Shaobo, LIU Liandeng, LIU Chen. On Jinchangyu Post-Ductile-Shearing gold deposit and its genesis[J]. Journal of Jilin University,1993,23(3):286−291.
[14] LIU Zhedong. Gold mine tectonics and mineralize regularities of Jitoushan一Xiaoyanzigou Gold Deposits in Ningqiang County, Shaanxi Province[D]. Xi'an: Chang'an University, 2017.
LIU Zhedong. Gold mine tectonics and mineralize regularities of Jitoushan一Xiaoyanzigou Gold Deposits in Ningqiang County, Shaanxi Province[D]. Xi'an: Chang'an University, 2017.
[15] 路彦明, 赵军, 陈祥, 等. 东准格尔双泉地区韧-脆性剪切带与金矿成矿[J]. 新疆地质, 2007, 25(2): 164−168.
LU Yanming, ZHAO Jun, CHEN Xiang, et al. The Relationship between ductile brittle shear zone and gold mineralization in Shuangquan area, East Junggar[J]. Xinjiang Geology,2007,25(2):164−168.
[16] 路彦明, 张玉杰, 张栋, 等. 剪切带与金矿成矿研究进展[J]. 黄金科技技术, 2008, 16(5): 1−6.
LU Yanming, ZHANG Yujie, ZHANG Dong, et al. Researching Progress about the Relationship of Shear Zone and Gold Mineralization[J]. Gold Science and Technology,2008,16(5):1−6.
[17] 任小华. 陕西勉略宁地区金属矿床成矿作用与找矿靶区预测研究[D]. 西安: 长安大学, 2008.
REN Xiaohua. Research on Metalliferous Deposit Mineralization and Survey and Prediction of Target Area for Mineral Prospecting Mian-lue-Ning Region, Shaanxi[D]. Xi'an: Chang'an University, 2008.
[18] 孙博, 任富强, 王瀚. 单轴压缩下碳质板岩各向异性特性的试验研究[J]. 环境地球科学, 2022, 81(16): 1−17.
SUN Bo, REN Fuqiang, WANG Han. Experimental investigation on anisotropic characteristics of carbonaceous slate under uniaxial compression[J]. Environmental Earth Sciences, 2022, 81(16): 1−17.
[19] 孙文清, 戴立东, 李和平, 等. 高温高压下碳质板岩电学性质的实验研究—一种具有异常高电导率的特殊天然岩石[J]. 高温高压, 2019, 48(5−6): 439−454.
SUN Wenqing, DAI Lidong, LI Heping, et al. Experimental study on the electrical properties of carbonaceous slate: a special natural rock with unusually high conductivity at high temperatures and pressures[J]. High Temperatures-High Pressures, 2019, 48(5−6): 439−454.
[20] 薛仲凯, 李朋伟, 常铭, 等. 西秦岭寨上卡林型金矿南矿段综合找矿模型及地质意义[J]. 西北地质, 2021, 54(3): 174−187.
XUE Zhongkai, LI Pengwei, CHANG Ming, et al. Comprehensive Prospecting Modeland the Geological Significance for Zhaishang Carlin-Type Gold Deposit in West Qin ling[J]. Northwestern Geology,2021,54(3):174−187.
[21] 杨瀚文, 王建中, 魏立勇, 等. 甘肃寨上超大型钨、金(锑)多金属矿床成因研究[J]. 西北地质, 2021, 54(1): 125−138.
YANG Hanwen, WANG Jianzhong, WEI Liyong, et al. Genesis of the Super-large Tungsten, Gold(Antimony)Polymetallic Deposit in Zhaishang, Gansu Province[J]. Northwestern Geology,2021,54(1):125−138.
[22] 杨运军, 韩旭, 杜少喜. 陕西勉略宁三角区成矿系统与成矿规律浅析[J]. 科技通报, 2020, 36(7): 4−13.
YANG Yunjun, HAN Xu, DU Shaoxi. Analysis of The Metallogenic System and Metallogenic Regularity in Mian-lue-ning Triangle Zone[J]. Bulletin of Science and Technology,2020,36(7):4−13.
[23] 张海斌, 黄传松. 炭质地层对激发极化法异常评价的影响[J]. 西部探矿工程, 2013, 25(12): 144−146+151. doi: 10.3969/j.issn.1004-5716.2013.12.044
ZHANG Haibin, HUANG Chuansong. Influence of carbonaceous layer on anomaly evaluation by excitation polarization method[J]. West-china Exploration Engineering,2013,25(12):144−146+151. doi: 10.3969/j.issn.1004-5716.2013.12.044
[24] 张宏如, 鲁坤鹏. 陕西省宁强县中坝范家山金矿成因初探[J]. 世界有色金属, 2017(10): 45−46.
ZHANG Hongru, LU Kunpeng. On the formation of gold deposit in Shaanxi province Jiashan Van Dam in Ningqiang County[J]. World Nonferrous Metals,2017(10):45−46.
[25] 张秀琴, 邓建华, 董刚, 等. 陕川丁家林-太阳坪含金脆-韧性剪切带特征[J]. 黄金地质, 2003, 9(2): 15−21.
ZHANG Xiuqin, DENG Jianhua, DONG Gang, et al. Characteristics of brittle-ductile shear zone and gold mineralization on the Dingjialin to Taiyangping deposit, Shaanxi and Sichuan[J]. Gold Geology,2003,9(2):15−21.
[26] 张利亚, 陈守余, 廖时理. 陕西勉略宁地区旧房梁金矿床元素地球化学特征及成矿意义[J]. 地质科技情报, 2017, 36(2): 151−159.
ZHANG Liya, CHEN Shouyu, LIAO Shili. Element Geochemistry and Metallogenic Significance of Jiufangliang Gold Deposit in Mianluening Region, Shaanxi Province[J]. Geological Science and Technology Information,2017,36(2):151−159.
[27] 周宁, 李发清. 双频激电法在寻找有碳质干扰铅锌矿中的应用[J]. 矿产勘查, 2014, 5(5): 796−801. doi: 10.3969/j.issn.1674-7801.2014.05.014
ZHOU Ning, LI Faqing. Application of dual frequency induced polarization method in prospecting the lead-zinc deposit with carbonaceous interference[J]. Mineral Exploration,2014,5(5):796−801. doi: 10.3969/j.issn.1674-7801.2014.05.014
[28] 周新春, 贾小梅, 刘爽, 等. 陕川丁家林-太阳坪金矿区金的赋存状态及主要特点分析[J]. 西北地质, 2005, 38(1): 64−72. doi: 10.3969/j.issn.1009-6248.2005.01.008
ZHOU Xinchun, JIA Xiaomei, LIU Shuang, et al. Characteristic analysis of occurrences of gold in the Dingjialin and Taiyangping gold field of Shaanxi and Sichuan province[J]. Northwestern Geology,2005,38(1):64−72. doi: 10.3969/j.issn.1009-6248.2005.01.008
[29] Alain Léger, Edward A. Mathez, Arthur Duba, et al. Carbonaceous material in metamorphosed carbonate rocks from the Waits River Formation, NE Vermont, and its effect on electrical conductivity[J]. Journal of Geophysical Research, Part B: Solid Earth,1996,101(B10):22203−22214. doi: 10.1029/96JB01757
[30] Denis Ivanovich Gorzhevskiy. On the role of organic matter in ore formation[J]. International Geology Review,1978,29(2):207−217.
[31] Jean Robert Disnar, Jean François Sureau. Organic matter in ore genesis: Progress and perspective[J]. Organic Geochemistry,1990,16(1/3):577−599.
[32] Maciej Rybicki, Leszek Marynowski, Stephen Stukins, et al. Age and Origin of the Well-Preserved Organic Matter in Internal Sediments from the Silesian-Cracow Lead-Zinc Deposits, Southern Poland[J]. Society of Economic Geologists, Inc. Economic Geology,2017,112(4):75−798.
-