Petrogenesis of Intermediate-acidic Intrusive Rocks in the Western Part of Biezhentao, Xinjiang: Constraints from Petrogeochemistry, Zircon U-Pb Dating and Hf Isotope
-
摘要:
新疆别珍套山地区西段所出露的中酸性侵入岩,主要由花岗岩、花岗闪长岩及闪长岩组成。笔者针对研究区不同岩性侵入岩开展了岩石学、锆石U-Pb同位素年代学和Hf同位素研究,以限定其岩石成因及其构造背景。锆石U-Pb定年结果显示花岗岩、花岗闪长岩和两件闪长岩样品的加权平均年龄分别为460.2 Ma、458.4 Ma及403.3~402.2 Ma,花岗岩和花岗闪长岩侵位于中—晚奥陶世,闪长岩则侵位于早泥盆世。在地球化学组成上,三类岩石均表现为富集轻稀土和大离子亲石元素,亏损重稀土和高场强元素,指示三者可能形成于俯冲背景下的岩浆弧环境。花岗闪长岩、闪长岩锆石Hf同位素特征均表现为亏损地幔向球粒陨石过渡的趋势,锆石εHf(t)值分别为−2.4~8.7、−2.5~3.5,二阶段Hf模式年龄远大于成岩年龄。此外,别珍套山西段花岗岩高Sr、低Y和Yb,具典型埃达克岩特征,为加厚下地壳部分熔融形成,受到俯冲板片流体的交代。花岗闪长岩为过铝质的钙碱性系列岩石,属I型花岗岩,其Mg#值为28.9~31.0,为幔源新生下地壳部分熔融形成。闪长岩属准铝质的钙碱性系列岩石,Mg#值为17.3~22.1,同样为幔源新生下地壳部分熔融形成,但可能为区域局部伸展背景下的产物。西天山别珍套山地区早古生代中酸性侵入岩为中奥陶世到早泥盆世北天山洋向南伊犁板块之下俯冲消减的岩浆产物。
Abstract:The intermediate-acidic intrusive rocks exposed in the western part of the Biezhentao mountains area in Xinjiang are mainly composed of granite, granodiorite and amphibolite. In this contribution, petrological, zircon U-Pb isotope chronology and Hf isotope studies were carried out for different lithologies of intrusive rocks in the study area to constrain their petrogenesis, and tectonic setting. The zircon U-Pb dating results show that the granite, granodiorite and two diorite samples have weighted average ages of 460.2 Ma, 458.4 Ma and 403.3-402.2 Ma, respectively, and the granite and granodiorite intruded in the Middle-Late Ordovician, while the amphibolite intruded in the Early Devonian. In terms of geochemical composition, the three types of rocks exhibit enrichment in LREE, LILE, and deficit in HREE, HSFE, indicating that the three types of rocks may be formed in the magmatic arc environment under the subduction background. The zircon Hf isotopic characteristics of granodiorite and diorite show a trend of transition from depleted mantle to chondrite, with zircon εHf(t) values ranging from −2.4 to 8.7 and −2.5 to 3.5, respectively, and the two-stage Hf model ages are much older than the intrusive time. In addition, the granite of the west section of the Beizhentao suite is high in Sr, low in Y and Yb, with typical adakite features, formed by partial melting of the thickened lower crust and accounted for by subduction plate fluids. Granodiorite is a peraluminous calc-alkaline series rock, which belongs to I-type granite. Its Mg# is 28.9 ~ 31.0, which is formed by partial melting of mantle-derived new lower crust. The diorite belongs to the quasi-aluminum calc-alkaline series rock, with Mg# between 17.3 and 22.1, which is also formed by partial melting of the mantle-derived new lower crust, but it may be the product under the background of regional local extension. The Early Paleozoic intermediate-acid intrusive rocks in the Biezhentaoshan area of the Western Tianshan Mountains are magmatic products of the subduction of the North Tianshan Ocean under the southern Yili plate from the Middle-Late Ordovician to the Early Devonian, indicating the environment of the continental margin magmatic arc.
-
-
图 1 赛里木区域构造位置简图(a)、赛里木区域构造单元图(b)和别珍套山西段地质图(c) (a据Long et al.,2011修改;b据何国琦等,1994修改;c据新疆有色地勘局地质矿产勘查研究院资料修改)
Figure 1.
图 4 别珍套山西段花岗闪长岩和闪长岩εHf(t)-年龄关系图(据章永梅等, 2016)
Figure 4.
图 5 别珍套山西段中酸性侵入岩地球化学图解(a据Middlemost, 1994; b据Rickwood, 1989; c据Wright, 1969; d据Maniar et al., 1989)
Figure 5.
图 7 别珍套山西段侵入岩体球粒陨石标准化稀土元素曲线(a)和原始地幔标准化微量元素图解(b) (标准化数据文献Sun et al., 1989)
Figure 7.
图 8 别珍套山西段花岗岩成因类型判别图(a、b据Whalen et al., 1987;c据Setsuya et al., 1979;d据Collins et al., 1982)
Figure 8.
图 10 别珍套山西段花岗岩Mg#-SiO2埃达克岩源区判别图(据Wang et al., 2012)和Dy/Yb比率-SiO2图解(分化趋势据Davidson et al., 2007)
Figure 10.
图 9 别珍套山西段中酸性侵入岩Sr/Y-Y(a)和(La/Yb)N-YbN图解(b) (底图据Defant et al., 1990)
Figure 9.
图 11 别珍套山西段中酸性岩体分离结晶、陆壳混染过程判别图解(a据Mecdonald et al., 2001; b据Tang et al., 2013; c、d据Fan et al., 2004)
Figure 11.
图 12 Sr/Th-Th/Ce图解(a)(据Zhu et al., 2005)、Sr/Nd-Th/Yb图解(b)(据Woodhead et al., 1998)和Th/Nb-Ba/Th图解(c)(据Wang et al., 2005)
Figure 12.
图 13 别珍套山西段岩体样品构造环境判别图(a据Condie, 1989; b、c据Pearce et al., 1984)
Figure 13.
图 15 伊犁板块北缘中—晚古生代构造–岩浆–成矿谱系图(据王冠南, 2018)
Figure 15.
表 1 别珍套山西段不同岩性岩石中锆石U-Pb同位素数据和测年结果
Table 1. Zircon U-Pb isotopic compositions and dating results in rocks of different lithologies in the western section of the Biezhentao suite
测点号 含量(10−6) Th/U 同位素原子比率 同位素年龄(Ma) 谐和度 Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 21BZ-G2 花岗岩 2 59.89 118.3 739.8 0.16 0.0565 0.0020 0.5812 0.0220 0.0741 0.0015 478 77.8 465 14.2 461 8.9 99% 4 83.85 177.8 1009.0 0.18 0.0550 0.0019 0.5729 0.0239 0.0742 0.0015 413 77.8 460 15.4 461 9.0 99% 5 71.46 124.9 845.5 0.15 0.0554 0.0020 0.5718 0.0212 0.0742 0.0012 428 79.6 459 13.7 461 7.1 99% 7 72.11 139.3 860.6 0.16 0.0580 0.0020 0.6002 0.0246 0.0743 0.0017 528 78.7 477 15.6 462 10.2 96% 15 57.47 112.0 691.2 0.16 0.0553 0.0022 0.5658 0.0225 0.0739 0.0013 433 88.9 455 14.6 460 7.9 99% 20 71.87 241.9 839.5 0.29 0.0588 0.0026 0.6004 0.0257 0.0744 0.0017 567 97.1 477 16.3 462 10.1 96% 25 62.58 108.6 787.1 0.14 0.0552 0.0019 0.5736 0.0201 0.0741 0.0012 420 77.8 460 13.0 461 7.4 99% 28 64.29 134.4 821.5 0.16 0.0546 0.0020 0.5706 0.0228 0.0742 0.0015 398 78.7 458 14.7 462 8.9 99% 29 73.44 213.0 875.1 0.24 0.0571 0.0023 0.5964 0.0238 0.0741 0.0011 494 58.3 475 15.2 461 6.7 97% 31 58.95 107.6 715.4 0.15 0.0574 0.0023 0.5939 0.0235 0.0736 0.0012 509 88.9 473 15.0 458 7.1 96% 33 79.70 141.7 967.5 0.15 0.0546 0.0028 0.5586 0.0300 0.0730 0.0011 394 114.8 451 19.5 454 6.5 99% 36 72.49 123.5 857.3 0.14 0.0562 0.0022 0.5747 0.0219 0.0742 0.0012 461 87.0 461 14.1 461 7.1 99% 37 102.48 171.9 1211.3 0.14 0.0552 0.0018 0.5711 0.0196 0.0744 0.0012 433 72.2 459 12.7 463 7.3 99% 21BZ-G1 花岗闪长岩 1 60.89 267.5 682.2 0.39 0.0568 0.0023 0.5902 0.0245 0.0743 0.0012 483 88.9 471 15.6 462 7.1 98% 2 77.80 353.7 895.5 0.39 0.0538 0.0021 0.5430 0.0208 0.0726 0.0009 361 61.1 440 13.7 452 5.7 97% 4 79.74 339.4 873.7 0.39 0.0587 0.0022 0.6060 0.0243 0.0741 0.0016 567 79.6 481 15.4 461 9.7 95% 6 51.95 148.8 633.4 0.23 0.0530 0.0030 0.5742 0.0369 0.0743 0.0027 332 127.8 461 23.8 462 16.1 99% 7 96.64 699.3 1060.3 0.66 0.0548 0.0022 0.5406 0.0212 0.0707 0.0011 467 95.4 439 13.9 441 6.5 99% 8 81.59 321.1 900.7 0.36 0.0574 0.0020 0.5961 0.0219 0.0742 0.0013 506 80.5 475 13.9 462 7.6 97% 9 53.59 152.4 619.7 0.25 0.0591 0.0024 0.6137 0.0268 0.0746 0.0017 572 88.9 486 16.9 464 10.4 95% 10 88.57 447.2 986.6 0.45 0.0556 0.0025 0.5567 0.0235 0.0725 0.0014 435 134.2 449 15.3 451 8.3 99% 11 98.56 545.4 1056.2 0.52 0.0537 0.0025 0.5486 0.0208 0.0737 0.0013 367 103.7 444 13.6 458 7.5 96% 12 82.15 311.3 943.5 0.33 0.0534 0.0019 0.5607 0.0224 0.0750 0.0016 346 81.5 452 14.6 466 9.6 96% 13 86.73 369.6 946.3 0.39 0.0551 0.0019 0.5775 0.0191 0.0753 0.0011 417 80.5 463 12.3 468 6.6 98% 18 124.86 763.5 1430.2 0.53 0.0553 0.0023 0.5641 0.0236 0.0738 0.0013 433 94.4 454 15.3 459 7.9 98% 22 99.48 467.8 1126.1 0.42 0.0571 0.0021 0.5867 0.0228 0.0738 0.0011 494 81.5 469 14.6 459 6.8 97% 24 87.13 373.0 1013.9 0.37 0.0571 0.0022 0.5851 0.0222 0.0739 0.0013 494 84.1 468 14.3 460 7.9 98% 28 71.85 318.2 768.8 0.41 0.0565 0.0020 0.5859 0.0221 0.0742 0.0011 472 77.8 468 14.1 461 6.9 98% 33 61.94 263.6 712.7 0.37 0.0568 0.0025 0.5766 0.0234 0.0739 0.0014 483 100.9 462 15.1 460 8.2 99% 34 107.04 624.7 1174.6 0.53 0.0552 0.0017 0.5716 0.0186 0.0742 0.0011 420 68.5 459 12.0 462 6.4 99% 35 90.06 462.3 1025.7 0.45 0.0559 0.0021 0.5778 0.0225 0.0743 0.0014 456 85.2 463 14.5 462 8.2 99% 36 27.31 124.0 312.1 0.40 0.0559 0.0029 0.5758 0.0301 0.0743 0.0016 450 117.6 462 19.4 462 9.6 99% 38 72.62 318.5 821.0 0.39 0.0564 0.0020 0.5802 0.0204 0.0740 0.0012 478 79.6 465 13.1 460 7.0 99% 19BZ-G1 闪长岩 2 14.01 71.1 187.6 0.38 0.0570 0.0032 0.5062 0.0296 0.0641 0.0011 500 122.2 416 20.0 400 6.5 96% 4 13.03 63.4 168.1 0.38 0.0532 0.0033 0.4756 0.0272 0.0652 0.0011 345 142.6 395 18.8 407 6.4 96% 8 12.26 64.9 157.8 0.41 0.0522 0.0029 0.4666 0.0252 0.0649 0.0010 295 125.9 389 17.5 405 6.0 95% 9 19.26 99.9 253.0 0.39 0.0544 0.0025 0.4856 0.0224 0.0644 0.0010 391 101.8 402 15.3 402 5.9 99% 13 14.66 93.6 187.3 0.50 0.0520 0.0028 0.4658 0.0242 0.0648 0.0010 287 119.4 388 16.8 405 5.8 95% 14 14.70 86.2 196.3 0.44 0.0524 0.0039 0.4685 0.0343 0.0648 0.0011 302 172.2 390 23.7 405 6.9 96% 18 12.28 63.2 158.3 0.40 0.0612 0.0033 0.5454 0.0289 0.0647 0.0010 656 117.4 442 19.0 404 6.3 91% 20 15.85 86.5 200.1 0.43 0.0595 0.0035 0.5230 0.0296 0.0644 0.0011 583 129.6 427 19.8 402 6.5 94% 22 14.48 73.4 189.5 0.39 0.0545 0.0029 0.4875 0.0250 0.0646 0.0011 394 88.0 403 17.1 403 6.6 99% 23 16.50 99.9 208.4 0.48 0.0593 0.0032 0.5264 0.0270 0.0644 0.0010 589 118.5 429 17.9 402 5.8 93% 26 17.11 97.2 228.9 0.42 0.0488 0.0026 0.4359 0.0229 0.0641 0.0010 200 124.1 367 16.2 401 6.1 91% 27 18.14 108.2 236.8 0.46 0.0592 0.0035 0.5257 0.0299 0.0640 0.0010 572 129.6 429 19.9 400 6.1 93% 28 23.93 152.1 303.8 0.50 0.0551 0.0029 0.4938 0.0247 0.0647 0.0010 417 116.7 407 16.8 404 5.8 99% 29 12.14 67.5 159.4 0.42 0.0531 0.0034 0.4772 0.0289 0.0646 0.0011 332 141.6 396 19.9 403 6.8 98% 31 58.00 451.7 700.5 0.64 0.0593 0.0025 0.5378 0.0219 0.0650 0.0010 589 123.1 437 14.4 406 6.1 92% 32 16.73 92.2 218.0 0.42 0.0606 0.0033 0.5346 0.0264 0.0646 0.0010 633 121.3 435 17.5 403 6.2 92% 33 15.12 92.8 196.0 0.47 0.0572 0.0032 0.5122 0.0281 0.0649 0.0011 502 124.1 420 18.9 406 6.5 96% 34 13.33 69.7 175.7 0.40 0.0549 0.0032 0.4827 0.0260 0.0644 0.0010 409 129.6 400 17.8 402 6.2 99% 21BZ-D 闪长岩 5 14.33 86.9 188.9 0.46 0.0525 0.0036 0.4763 0.0336 0.0645 0.0015 306 157.4 396 23.1 403 9.0 98% 7 11.00 63.1 146.5 0.43 0.0535 0.0035 0.4750 0.0306 0.0645 0.0014 350 150.9 395 21.0 403 8.8 97% 9 19.66 105.9 255.2 0.42 0.0572 0.0033 0.5121 0.0281 0.0644 0.0011 498 125.9 420 18.9 402 6.8 95% 14 18.95 149.2 234.4 0.64 0.0547 0.0031 0.4888 0.0271 0.0643 0.0012 398 127.8 404 18.5 402 7.5 99% 16 21.11 151.2 264.2 0.57 0.0537 0.0030 0.4814 0.0267 0.0644 0.0012 367 125.9 399 18.3 402 7.3 99% 17 16.73 103.4 216.8 0.48 0.0527 0.0033 0.4724 0.0303 0.0644 0.0012 317 142.6 393 20.9 403 7.5 97% 18 16.91 104.1 218.3 0.48 0.0528 0.0036 0.4726 0.0314 0.0644 0.0012 320 149.1 393 21.7 402 7.0 97% 19 11.19 59.4 150.1 0.40 0.0562 0.0039 0.4932 0.0345 0.0643 0.0015 461 153.7 407 23.4 402 8.8 98% 22 15.35 53.5 209.8 0.26 0.0568 0.0030 0.5041 0.0276 0.0644 0.0012 483 116.7 414 18.6 402 7.3 97% 24 12.98 76.9 164.3 0.47 0.0554 0.0035 0.4842 0.0296 0.0644 0.0012 428 142.6 401 20.3 402 7.1 99% 27 27.36 141.4 351.1 0.40 0.0554 0.0024 0.4892 0.0216 0.0643 0.0011 428 98.1 404 14.7 402 6.4 99% 29 9.73 51.7 125.9 0.41 0.0635 0.0048 0.5413 0.0363 0.0643 0.0014 728 156.5 439 23.9 402 8.2 91% 30 19.16 124.3 243.6 0.51 0.0531 0.0029 0.4698 0.0267 0.0644 0.0013 345 124.1 391 18.4 402 7.8 97% 31 32.81 305.0 384.4 0.79 0.0561 0.0029 0.5002 0.0268 0.0645 0.0011 457 114.8 412 18.1 403 6.4 97% 32 10.41 55.4 136.3 0.41 0.0611 0.0044 0.5302 0.0373 0.0641 0.0012 643 155.5 432 24.7 401 7.4 92% 34 10.54 50.8 140.3 0.36 0.0561 0.0042 0.4923 0.0348 0.0645 0.0015 454 166.6 406 23.7 403 8.9 99% 36 16.51 101.5 219.0 0.46 0.0569 0.0029 0.5081 0.0283 0.0644 0.0014 487 114.8 417 19.0 402 8.7 96% 38 16.31 78.5 220.1 0.36 0.0532 0.0033 0.4600 0.0248 0.0644 0.0013 345 143.5 384 17.2 402 7.7 95% 39 11.24 60.2 146.2 0.41 0.0542 0.0043 0.4685 0.0333 0.0644 0.0014 389 177.8 390 23.1 403 8.4 96% 40 21.04 135.9 269.9 0.50 0.0541 0.0031 0.4755 0.0260 0.0645 0.0013 376 129.6 395 17.9 403 7.9 98% 表 2 别珍套山西段花岗闪长岩和闪长岩锆石Lu-Hf同位素分析结果
Table 2. Lu-Hf isotopic compositions and related parameters of zircons from granodiorite and amphibolite in the western section of the Biezhentao suite
测点号 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ ɛHf(0) ɛHf(t) TDM TDM2 fLu/Hf 21BZ-G1 花岗闪长岩 1 461.8 0.075252 0.002009 0.282728 0.000020 −1.5 8.0 762 929 −0.94 2 451.7 0.076667 0.002114 0.282754 0.000024 −0.6 8.7 727 879 −0.94 3 460.5 0.056082 0.001535 0.282669 0.000020 −3.6 6.0 838 1055 −0.95 4 440.3 0.058608 0.001527 0.282620 0.000020 −5.4 3.9 908 1177 −0.95 5 461.8 0.031095 0.000914 0.282449 0.000031 −11.4 −1.5 1133 1537 −0.97 6 440.6 0.079593 0.002046 0.282661 0.000023 −3.9 5.2 861 1094 −0.94 7 463.9 0.064233 0.001776 0.282670 0.000024 −3.6 6.1 841 1054 −0.95 8 458.4 0.062497 0.001644 0.282635 0.000024 −4.8 4.8 888 1133 −0.95 9 466.3 0.077579 0.001850 0.282704 0.000018 −2.4 7.3 794 978 −0.94 10 473.2 0.059918 0.001761 0.282434 0.000026 −12.0 −2.1 1180 1580 −0.95 11 467.9 0.064247 0.001712 0.282706 0.000020 −2.3 7.4 788 970 −0.95 12 471.8 0.046076 0.001250 0.282421 0.000020 −12.4 −2.4 1182 1599 −0.96 13 461.1 0.069448 0.001769 0.282655 0.000023 −4.2 5.5 863 1090 −0.95 14 459.7 0.059415 0.001607 0.282651 0.000022 −4.3 5.4 865 1097 −0.95 15 462.0 0.061391 0.001568 0.282588 0.000023 −6.5 3.2 955 1238 −0.95 16 462.1 0.019017 0.000583 0.282503 0.000028 −9.5 0.5 1048 1409 −0.98 19BZ-G1 闪长岩 1 400.5 0.015346 0.000614 0.282584 0.000012 −6.6 2.0 936 1265 −0.98 2 400.3 0.029235 0.001125 0.282552 0.000013 −7.8 0.8 993 1344 −0.97 3 407.3 0.023912 0.000958 0.282611 0.000012 −5.7 3.0 907 1207 −0.97 4 398.3 0.036305 0.001493 0.282599 0.000026 −6.1 2.3 936 1246 −0.96 5 400.7 0.029105 0.001179 0.282631 0.000012 −5.0 3.5 883 1168 −0.96 6 404.1 0.018711 0.000774 0.282586 0.000013 −6.6 2.1 936 1259 −0.98 7 405.1 0.020557 0.000842 0.282612 0.000012 −5.7 3.0 903 1204 −0.97 8 402.1 0.027607 0.001123 0.282565 0.000011 −7.3 1.2 975 1315 −0.97 9 403.2 0.033077 0.001346 0.282610 0.000014 −5.7 2.8 918 1218 −0.96 10 403.1 0.023197 0.000958 0.282559 0.000013 −7.5 1.1 979 1325 −0.97 11 403.0 0.028093 0.001144 0.282606 0.000012 −5.9 2.7 918 1223 −0.97 12 404.5 0.025597 0.001041 0.282605 0.000021 −5.9 2.7 917 1223 −0.97 13 402.8 0.029118 0.001196 0.282569 0.000013 −7.2 1.4 971 1306 −0.96 14 405.7 0.028927 0.001184 0.282457 0.000017 −11.2 −2.5 1130 1558 −0.96 15 405.0 0.032025 0.001302 0.282598 0.000013 −6.2 2.4 934 1244 −0.96 16 404.1 0.018516 0.000768 0.282589 0.000012 −6.5 2.2 933 1255 −0.98 17 402.9 0.032618 0.001323 0.282609 0.000012 −5.8 2.8 918 1219 −0.96 18 402.3 0.032640 0.001379 0.282584 0.000015 −6.6 1.9 955 1277 −0.96 19 403.3 0.024766 0.001018 0.282586 0.000011 −6.6 2.0 943 1265 −0.97 20 402.3 0.023325 0.000972 0.282591 0.000014 −6.4 2.2 934 1253 −0.97 21 406.9 0.025988 0.001048 0.282586 0.000011 −6.6 2.1 944 1264 −0.97 22 400.8 0.024556 0.001018 0.282599 0.000013 −6.1 2.5 924 1237 −0.97 23 400.1 0.028670 0.001181 0.282567 0.000013 −7.2 1.2 974 1313 −0.96 24 404.0 0.020074 0.000829 0.282537 0.000013 −8.3 0.4 1007 1372 −0.98 25 403.3 0.024160 0.000996 0.282596 0.000014 −6.2 2.4 929 1244 −0.97 26 407.6 0.015832 0.000661 0.282592 0.000012 −6.4 2.4 925 1242 −0.98 27 406.0 0.032733 0.001296 0.282584 0.000015 −6.6 1.9 953 1273 −0.96 28 403.3 0.042175 0.001700 0.282619 0.000014 −5.4 3.0 913 1203 −0.95 29 405.6 0.032909 0.001312 0.282592 0.000012 −6.4 2.2 942 1256 −0.96 30 402.2 0.018092 0.000749 0.282574 0.000012 −7.0 1.7 953 1288 −0.98 31 404.7 0.035340 0.001395 0.282568 0.000016 −7.2 1.3 978 1311 −0.96 表 3 别珍套山西段中酸性侵入岩主量元素含量(%)
Table 3. Major element compositions (%) of intermediate-acidic intrusive rocks in the western section of the Biezhentao suite
样品号 岩性 SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 LOI Total FeOT Mg# 19BZ-G2-18 花岗岩 72.1 0.11 17.0 0.74 0.02 0.24 1.60 5.10 2.32 0.03 0.50 99.7 0.67 35.8 19BZ-G2-19 花岗岩 72.9 0.13 16.5 0.90 0.02 0.23 1.56 5.05 2.38 0.04 0.40 100.1 0.81 30.6 19BZ-G2-20 花岗岩 71.1 0.12 17.1 0.88 0.02 0.24 1.66 6.24 2.21 0.04 0.37 100.0 0.79 32.0 19BZ-G2-24 花岗岩 72.3 0.11 16.6 0.73 0.02 0.17 1.18 5.30 2.93 0.03 0.24 99.6 0.66 28.6 19BZ-G2-26 花岗岩 72.6 0.1 17.1 0.71 0.01 0.21 1.01 4.75 2.65 0.03 0.37 99.6 0.64 33.8 19BZ-G2-27 花岗岩 73.3 0.11 16.5 0.76 0.02 0.15 1.15 5.11 2.50 0.03 0.36 100.0 0.69 25.4 21BZ-G2-13 花岗岩 72.1 0.11 17.1 0.87 0.02 0.20 1.89 5.05 2.20 0.04 0.46 100.0 0.78 28.8 21BZ-G2-20 花岗岩 71.2 0.11 18.5 0.84 0.02 0.23 1.77 4.70 2.07 0.03 0.56 100.0 0.76 32.4 21BZ-G2-21 花岗岩 73.3 0.13 16.8 0.88 0.02 0.20 1.53 4.39 1.99 0.03 0.63 100.0 0.80 27.6 21BZ-G1-2 花岗闪长岩 66.1 0.38 18.2 3.34 0.07 0.87 4.35 3.34 1.77 0.13 1.61 100.2 3.05 31.0 21BZ-G1-3 花岗闪长岩 65.4 0.42 18.4 4.01 0.08 0.96 4.05 3.96 1.31 0.16 1.41 100.2 3.65 29.2 21BZ-G1-6 花岗闪长岩 65.8 0.38 17.8 3.68 0.07 0.90 3.46 4.50 1.23 0.15 1.20 99.1 3.38 29.6 21BZ-G1-7 花岗闪长岩 68.1 0.28 17.3 2.26 0.04 0.57 3.40 5.12 1.25 0.13 1.13 99.5 2.07 30.3 21BZ-G1-9 花岗闪长岩 65.3 0.36 18.2 3.77 0.07 0.97 4.20 4.07 1.35 0.14 1.31 99.8 3.45 30.7 21BZ-G1-11 花岗闪长岩 66.0 0.38 18.5 3.50 0.07 0.83 3.33 4.88 1.64 0.14 0.91 100.2 3.17 28.9 19BZ-G1-4 闪长岩 58.9 1.19 15.9 10.59 0.16 1.30 4.71 4.16 2.39 0.39 0.40 100.0 9.57 17.5 19BZ-G1-6 闪长岩 59.3 1.05 15.6 11.12 0.18 1.35 4.23 3.54 2.51 0.36 0.39 99.6 10.08 17.3 19BZ-G1-8 闪长岩 59.2 1.15 16.1 10.31 0.16 1.28 4.66 3.99 2.15 0.38 0.44 99.8 9.33 17.6 19BZ-G1-12 闪长岩 58.1 1.34 16.7 10.93 0.16 1.66 5.47 3.49 1.70 0.46 0.31 100.3 9.84 20.7 19BZ-G1-13 闪长岩 58.0 1.18 17.2 10.25 0.16 1.58 5.25 3.77 1.68 0.34 0.36 99.7 9.28 21.0 19BZ-G1-15 闪长岩 56.4 1.3 16.7 11.80 0.19 1.55 5.37 3.35 2.02 0.43 0.21 99.4 10.71 18.5 21BZ-D-25 闪长岩 57.9 1.13 16.6 10.29 0.16 1.44 4.82 3.46 2.12 0.35 0.94 99.2 9.43 19.4 21BZ-D-26 闪长岩 54.6 1.62 16.9 13.20 0.21 2.18 3.76 2.31 2.14 0.58 2.53 100.0 12.19 22.1 21BZ-D-28 闪长岩 54.5 1.42 17.7 12.45 0.19 1.68 5.57 3.81 2.13 0.51 1.00 101.0 11.21 18.9 21BZ-D-31 闪长岩 58.7 1.03 18.0 9.96 0.17 1.41 3.91 3.59 2.15 0.31 0.77 100.0 9.04 19.6 注:FeOT= 0.8998 ×Fe2O3T,Mg#=(MgO/40)(MgO/40+FeOT/62)×100。表 4 别珍套山西段中酸性侵入岩稀土和微量元素含量(10−6)及特征参数
Table 4. Trace element compositions (10−6) and related parameters of the intermediate-acidic intrusive rocks in the western section of the Biezhentao suite
样品号 岩性 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ΣREE LREE/
HREEδEu 19BZ-G2-18 花岗岩 5.12 10.5 1.27 5.15 1.07 0.373 0.961 0.197 1.16 0.239 0.664 0.122 0.741 0.104 27.67 5.61 1.10 19BZ-G2-19 花岗岩 5.37 11.0 1.32 5.24 1.08 0.370 0.970 0.206 1.14 0.239 0.677 0.120 0.743 0.104 28.58 5.81 1.08 19BZ-G2-20 花岗岩 5.49 11.0 1.29 5.04 1.08 0.382 0.988 0.189 1.17 0.241 0.685 0.126 0.836 0.114 28.63 5.58 1.11 19BZ-G2-24 花岗岩 4.19 9.18 1.05 4.08 1.01 0.349 0.941 0.209 1.28 0.276 0.738 0.139 0.844 0.113 24.40 4.37 1.08 19BZ-G2-26 花岗岩 5.16 11.3 1.31 4.95 1.35 0.355 1.30 0.279 1.79 0.376 0.988 0.183 1.04 0.139 30.52 4.01 0.81 19BZ-G2-27 花岗岩 3.99 8.28 0.976 4.05 0.986 0.338 0.950 0.216 1.39 0.291 0.773 0.142 0.833 0.110 23.33 3.96 1.05 21BZ-G2-13 花岗岩 2.87 6.83 0.774 3.31 0.878 0.134 1.02 0.245 1.09 0.208 0.585 0.083 0.548 0.077 18.65 3.84 0.43 21BZ-G2-20 花岗岩 2.68 5.86 0.692 2.87 0.714 0.030 0.801 0.183 0.969 0.183 0.603 0.088 0.584 0.084 16.34 3.68 0.12 21BZ-G2-21 花岗岩 2.51 5.42 0.656 2.60 0.625 0.036 0.743 0.153 0.827 0.157 0.506 0.079 0.474 0.073 14.86 3.93 0.16 21BZ-G1-2 花岗闪长岩 28.7 56.9 6.65 26.9 5.62 1.42 6.00 1.13 5.47 1.02 3.12 0.414 2.74 0.420 146.5 6.21 0.74 21BZ-G1-3 花岗闪长岩 27.1 52.3 6.42 27.6 6.02 1.60 6.53 1.31 6.15 1.20 3.69 0.478 3.10 0.459 144.0 5.28 0.78 21BZ-G1-6 花岗闪长岩 33.3 67.8 7.67 31.3 6.64 1.27 7.24 1.46 7.20 1.40 4.40 0.573 3.76 0.547 174.6 5.57 0.56 21BZ-G1-7 花岗闪长岩 24.9 45.6 5.76 24.1 4.72 1.25 4.95 0.910 4.19 0.768 2.40 0.309 1.99 0.287 122.1 6.73 0.78 21BZ-G1-9 花岗闪长岩 28.1 54.0 6.60 27.3 6.03 1.49 6.54 1.31 6.57 1.24 3.82 0.514 3.16 0.466 147.1 5.23 0.72 21BZ-G1-11 花岗闪长岩 35.1 75.4 7.94 31.5 6.59 1.46 7.25 1.48 7.20 1.34 4.22 0.554 3.73 0.531 184.3 6.01 0.64 19BZ-G1-4 闪长岩 27.7 64.1 8.75 40.0 9.45 2.40 8.52 1.75 10.0 1.99 5.32 0.953 5.91 0.842 187.7 4.32 0.80 19BZ-G1-6 闪长岩 31.6 72.6 9.43 41.3 9.56 2.03 8.05 1.63 9.50 1.88 4.99 0.881 5.36 0.843 199.7 5.03 0.69 19BZ-G1-8 闪长岩 31.2 71.9 9.42 41.8 9.92 2.41 8.67 1.76 10.1 2.02 5.36 0.936 5.75 0.850 202.1 4.70 0.78 19BZ-G1-12 闪长岩 34.3 73.6 9.28 40.2 9.23 2.38 7.95 1.57 8.78 1.80 4.86 0.858 5.18 0.774 200.8 5.32 0.83 19BZ-G1-13 闪长岩 28.2 58.9 7.52 31.8 7.41 2.23 6.51 1.27 7.30 1.49 4.06 0.716 4.44 0.652 162.5 5.15 0.96 19BZ-G1-15 闪长岩 35.9 76.4 10.0 43.9 10.1 2.40 8.71 1.75 9.91 2.00 5.40 0.908 5.57 0.822 213.8 5.10 0.76 21BZ-D-25 闪长岩 25.7 60.3 8.23 40.9 10.5 3.60 10.8 2.29 11.1 2.11 6.48 0.882 5.88 0.897 189.7 3.69 1.02 21BZ-D-26 闪长岩 30.8 78.9 10.1 50.3 12.4 3.43 13.4 2.77 12.9 2.42 7.21 0.934 6.11 0.923 232.6 3.98 0.81 21BZ-D-28 闪长岩 40.2 97.7 11.9 55.7 12.9 3.48 13.7 2.72 12.6 2.34 7.14 0.913 6.07 0.895 268.3 4.78 0.79 21BZ-D-31 闪长岩 46.6 99.1 11.0 48.8 9.87 3.27 10.7 1.98 9.11 1.71 5.13 0.679 4.77 0.729 253.4 6.28 0.97 -
[1] 邓聚, 王博, 刘珈硕, 等 . 伊犁地块北缘温泉地区托克赛岩组的构造变形与年代学研究及其地质意义[J]. 大地构造与成矿学,2023 ,47 (3 ):484 −520 .DENG Ju, WANG Bo, LIU Jiashuo, et al . Structural Features and Zircon U-Pb Ages of the Tuokesai Formation in the Wenquan Area, Northern Yili Block, and Their Geological Significances[J]. Geotectonica et Metallogenia,2023 ,47 (3 ):484 −520 .[2] 高俊, 钱青, 龙灵利, 等 . 西天山的增生造山过程[J]. 地质通报,2009 ,28 (12 ):1804 −1816 .GAO Jun, QIAO Qing, LONG Lingli, et al . Accretionary orogenic process of Western Tianshan, China[J]. Geological Bulletin of China,2009 ,28 (12 ):1804 −1816 .[3] 高永丰, 侯增谦, 魏瑞华 . 冈底斯晚第三纪斑岩的岩石学、地球化学及其地球动力学意义[J]. 岩石学报,2003 ,19 (3 ):418 −428 .GAO Yongfeng, HOU Zengqian, WEI Ruihua . Neogene porphyries from Gangdese: petrological, geochemical characteristics and geodynamic significances[J]. Acta Petrologica Sinica,2003 ,19 (3 ):418 −428 .[4] 顾雪祥, 章永梅, 彭义伟, 等 . 西天山博罗科努成矿带与侵入岩有关的铁铜钼多金属成矿系统: 成岩成矿地球化学与构造-岩浆演化[J]. 地学前缘,2014 ,21 (5 ):156 −175 .GU Xuexiang, ZHANG Yongmei, PENG Yiwei, et al . The Fe-Cu-Mo polymetallic mineralization system related to intermediate-acid intrusions in the Boluokenu metallogenic belt of the West Tianshan, Xinjiang: Rock-and ore-forming geochemistry and tectonomagmatic evolution[J]. Earth Science Frontiers,2014 ,21 (5 ):156 −175 .[5] 何国琦, 李茂松, 刘德权. 中国新疆古生代地壳演化及成矿[M]. 乌鲁木齐: 新疆人民出版社, 1994. [6] 胡霭琴, 韦刚健, 张积斌, 等 . 西天山温泉地区早古生代斜长角闪岩的锆石SHRIMP U-Pb年龄及其地质意义[J]. 岩石学报,2008 ,24 (12 ):2731 −2740 .HU Aiqin, WEI Gangjian, ZHANG Jibin, et al . SHRIMP U-Pb ages for zircons of amphibolites and tectonic evolution significance from the Wenquan domain in the West Tianshan Mountains, Xinjiang, China[J]. Acta Petrologica Sinica,2008 ,24 (12 ):2731 −2740 .[7] 胡霭琴, 韦刚健, 江博明, 等 . 天山0.9Ga新元古代花岗岩SHRIMP锆石U-Pb年龄及其构造意义[J]. 地球化学,2010 ,39 (3 ):197 −212 .HU Aiqin, WEI Gangjian, JIANG Boming, et al . Formation of the 0.9 Ga Neoproterozoic granitoids in the Tianshan Orogen, NW China: Constraints from the SHRIMP zircon age determination and its tectonic significance[J]. Geochimica,2010 ,39 (3 ):197 −212 .[8] 贾莹刚. 新疆温泉早古生代中酸性侵入岩U-Pb测年与Sr-Nd-Hf同位素组成[D]. 北京: 中国地质大学, 2018. JIA Yinggang. LA-ICP-MS zircon U-Pb dating, Sr-Nd-Hf isotopic analysis of the Early Paleozoic intermediate-acidic intrusions in the Wenquan area, Xinjiang[D]. Beijing: China University of Geosciences, 2018. [9] 靳刘圆, 杨硕, 伊其安, 等 . 新疆中天山南缘代京却可却花岗岩锆石U-Pb年龄及地球化学特征[J]. 新疆地质,2017 ,35 (4 ):417 −425 .JIN Liuyuan, YANG Shuo, YI Qi’an, et al . Zirzon U-Pb Age and Geochemical Characteristics of Granite in Dajingquekeque at the Southern Margin of the Central Tianshan Mountain, Xinjiang[J]. Xinjiag Geology,2017 ,35 (4 ):417 −425 .[10] 李孔森, 王博, 舒良树, 等 . 北天山温泉群的地质特征、时代和构造意义[J]. 高校地质学报,2013 (3 ):491 −503 .LI Kongsen, WANG Bo, SHU Liangshu, et al . Geological Features, Ages, and Tectonic Implications of the Wenquan Group in NW Chinese Tianshan[J]. Geological Journal of China Universities,2013 (3 ):491 −503 .[11] 李平, 朱志新, 穆利修, 等 . 新疆中天山巴伦台地区花岗质侵入体地球化学、年代学研究及其构造意义[J]. 地质学报,2017 ,91 (1 ):80 −93 .LI Ping, ZHU Zhixin, MU Lixiu, et al . Geochemistry and Geochronology of Granitoids Intrusions from the Baluntai Area in Central Mountains, and Its Tectonic Significance[J]. Acta Geologica Sinica,2017 ,91 (1 ):80 −93 .[12] 李三忠, 余珊, 赵淑娟, 等 . 东亚大陆边缘的板块重建与构造转换[J]. 海洋地质与第四纪地质,2013 ,33 (3 ):65 −94 .LI Sanzhong, YU Shan, ZHAO Shujuan, et al . Tectonic transition and plate reconstructions of the East Asian continental magin[J]. Marine Geology & Quaternary Geology,2013 ,33 (3 ):65 −94 .[13] 马星华, 陈斌, 王超, 等 . 早古生代古亚洲洋俯冲作用: 来自新疆哈尔里克侵入岩的锆石U-Pb年代学、岩石地球化学和Sr-Nd同位素证据[J]. 岩石学报,2015 ,31 (1 ):89 −104 .MA Xinghua, CHEN Bin, WANG Chao, et al . Early Paleozoic subduction of the Paleo-Asian Ocean: Zircon U-Pb geochronological, geochemical and Sr-Nd isotopic evidence from the Harlik pluton, Xinjiang[J]. Acta Petrologica Sinica,2015 ,31 (1 ):89 −104 .[14] 孟令华, 马明永, 崔庆岗 . 新疆西天山温泉岩体群LA-ICP-MS锆石U-Pb定年及其地质意义[J]. 地质与勘探,2022 ,58 (3 ):597 −608 .MENG Linghua, MA Mingyong, CUI Qinggang . LA-ICP-MS zircon U-Pb dating of the Wenquan pluton group in western Tianshan, Xinjiang and its geological significance[J]. Geology and Exploration,2022 ,58 (3 ):597 −608 .[15] 舒良树, 卢华复, Charvet J, 等 . 天山东部麻粒岩定年与地球化学研究[J]. 南京大学学报(自然科学),2000 ,36 (6 ):718 −727 .SHU Liangshu, LU Huafu, Charvet J, et al . A study of isotopic dating and geochemistry of granulites in the Eastern Tianshan belt[J]. Journal of Nanjing University (Natural Sciences),2000 ,36 (6 ):718 −727 .[16] 孙立新, 任邦方, 赵凤清, 等 . 额尔古纳地块太平川巨斑状花岗岩的锆石U-Pb年龄和Hf同位素特征[J]. 地学前缘,2012 ,19 (5 ):114 −122 .SUN Lixin, REN Bangfang, ZHAO Fengqing, et al . Zircon U-Pb ages and Hf isotope characteristics of Taipingchuan large porphyritic granite pluton of Erguna Massif in the Great Xing’an Range[J]. Earth Science Frontiers,2012 ,19 (5 ):114 −122 .[17] 田宁. 西北天山阔库确科-哈勒尕提一带晚古生代岩浆作用与铁铜多金属成矿[D]. 北京: 中国地质大学(北京), 2016. TIAN Ning. The Late Paleozoic magmatism and corresponding Iron and Copper polymetallic metallogenic in Kuokuqueke-Halegati district, Chinese Northwestern Tianshan[D]. Beijing: China University of Geosciences, 2016. [18] 王盟, 裴先治, 张进江, 等. 伊犁地块北缘早石炭世阿拉斯坦闪长岩成因及其对北天山洋俯冲过程的启示[J]. 地质通报, 2023, 42(5): 771-787. WANG Meng, PEI Xianzhi, ZHANG Jinjiang, et al. Petrogenesis of the Early Carboniferous Alasitan diorites from the northern margin of Yili Block and implication for subduction process of the North Tianshan Ocean. Geological Bulletin of China, 2023, 42(5): 771-787. [19] 王冠南. 西天山伊犁板块北缘晚古生代花岗岩浆演化与铜多金属成矿作用[D]. 北京: 中国地质大学(北京), 2018. WANG Guannan 2018 The evolution of Paleozoic granitic magma and its relation to the copper polymetallic mineralization in the northern margin of the Yili block, Western Tianshan, Xinjiang[D]. Beijing: China University of Geosciences, 2018. [20] 吴福元, 李献华, 杨进辉, 等 . 花岗岩成因研究的若干问题[J]. 岩石学报,2007 ,23 (6 ):1217 −1238 .WU Fuyuan, LI Xianhua, YANG Jinhui, et al . Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinca,2007 ,23 (6 ):1217 −1238 .[21] 肖序常. 新疆北部及其邻区大地构造[M]. 北京: 地质出版社, 1992. [22] 薛春纪, 赵晓波, 莫宣学, 等 . 西天山巨型金铜铅锌成矿带构造成矿演化和找矿方向[J]. 地质学报,2014 ,88 (12 ):2490 −2531 .XUE Chunji, ZHAO Xiaobo, MO Xuanxue, et al . Tectonic-Metallogenic Evolution of Western Tianshan Giant Au-Cu-Zn-Pb Metallogenic Belt and Prospecting Orietation[J]. Acta Geologica Sinica,2014 ,88 (12 ):2490 −2531 .[23] 徐劲驰. 新疆西天山哈尔达坂铅锌矿床地质-地球化学特征与成矿作用研究[D]. 中国地质大学(北京), 2021. XU Jinchi. Geological-Geochemical Characteristics and Metallogenesis of the Haerdaban Lead-Zinc Deposit in Western Tianshan, Xinjiang[D]. Beijing: China University of Geosciences, 2021. [24] 徐学义, 马中平, 夏祖春, 等 . 天山中西段古生代花岗岩TIMS法锆石U-Pb同位素定年及岩石地球化学特征研究[J]. 西北地质,2006 ,39 (1 ):50 −75 .XU Xueyi, MA Zhongping, XIA Zuchun, et al . TIMS U-Pb Isotopic Dating and Geochemical Characteristics of Paleozoic Granitic Rocks from the Middle-Western Section of Tianshan[J]. Northwestern Geology,2006 ,39 (1 ):50 −75 .[25] doi: 10.18654/1000-0569/2020.06.02张旗, 焦守涛 . 埃达克岩来自高压背景—一个科学的、可靠的、有预见性的科学发现[J]. 岩石学报,2020 ,36 (6 ):1675 −1683 . doi: 10.18654/1000-0569/2020.06.02ZHANG Qi, JIAO Shoutao . Adakite comes from a high-pressure background: A scientific, reliable, predictable scientific discovery[J]. Acta Petrologica Sinica,2020 ,36 (6 ):1675 −1683 .[26] 张旗, 王焰, 熊小林, 等. 埃达克岩和花岗岩: 挑战与机遇[M]. 北京: 中国大地出版社, 2008. [27] 章永梅, 张力强, 高虎, 等 . 新疆西天山呼斯特杂岩体岩石学、锆石U-Pb年龄及Hf同位素特征[J]. 岩石学报,2016 ,32 (6 ):1749 −1769 .ZHANG Yongmei, ZHANG Liqiang, GAO Hu, et al . Petrology, zircon U-Pb geochronology and Hf isotopes of the Husite complex in West Tianshan, Xinjiang[J]. Acta Petrologica Sinica,2016 ,32 (6 ):1749 −1769 .[28] 张宇昕, 亚夏尔·亚力坤, 张博文, 等 . 新疆温泉南部哈尔达坂石英二长岩年代学、地球化学及构造意义[J]. 地质科学,2021 ,56 (4 ):1192 −1213 .ZHANG Yuxin, YAXIAER·Yalikun, ZHANG Bowen, et al . Geochronology, geochemistry and tectonic significance of quartz monzonite in Hardaban, southern Wenquan, Xinjiang[J]. Chinese Journal of Geology,2021 ,56 (4 ):1192 −1213 .[29] 朱志新, 李锦轶, 董连慧, 等 . 新疆西天山古生代侵入岩的地质特征及构造意义[J]. 地学前缘,2011 ,18 (2 ):170 −179 .ZHU Zhixin, LI Jinyi, DONG Lianhui, et al . Geological characteristics and tectonic significance of Paleozoic intrusive rocks in Western Tianshan of Xinjiang Province[J]. Earth Science Frontiers,2011 ,18 (2 ):170 −179 .[30] 左国朝, 张作衡, 王志良, 等 . 新疆西天山地区构造单元划分、地层系统及其构造演化[J]. 地质论评,2008 ,54 (6 ):748 −766 .ZUO Guochao, ZHANG Zuoheng, WANG Zhiliang, et al . Tectonic Division Stratigraphical Stystem and the Evolution of Western Tianshan Mountains Xinjiang[J]. Geological Review,2008 ,54 (6 ):748 −766 .[31] doi: 10.1016/j.gr.2009.11.014Biske Y S, Seltmann R . Paleozoic Tian-shan as a transitional region between the Rheic and Urals-Turkestan oceans[J]. Gondwana Research,2010 ,17 (2-3 ):602 −613 .[32] Bonin B . A-type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos,2007 ,97 (1−2 ):1 −29 .[33] doi: 10.1016/j.jpgl.2008.01.022Bolhar R, Weaver S D, Whitehouse M J, et al . Sources and evolution of arc magmas inferred from coupled O and Hf isotope systematics of plutonic zircons from the Cretaceous Separation Point Suite (New Zealand)[J]. Earth and Planetary Science Letters,2008 ,268 (3-4 ):312 −324 .[34] doi: 10.1007/s11434-006-0257-7Castillo P R . An overview of adakite petrogenesis[J]. Chinese Science Bulletin,2006 ,51 (3 ):257 −268 .[35] doi: 10.1016/j.lithos.2011.09.013Castillo P R . Adakite petrogenesis[J]. Lithos,2012 ,134-135 :304 −316 .[36] doi: 10.1016/j.gr.2012.07.004Castro A, Vogt K, Gerya T . Generation of new continental crust by sublithospheric silicic-magma relamination in arcs: A test of Taylor's andesite model[J]. Gondwana Research,2013 ,23 :1554 −1566 .[37] Chappell B W, White A J R . Two Contrasting Granite Types[J]. Pacific Geology,1974 ,8 :173 −174 .[38] doi: 10.1017/S0263593300007720Chappell B W, White A J R . I-and S-type Granites in the Lachlan Fold Belt[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh,1992 ,83 (1-2 ):1 −26 .[39] doi: 10.1007/BF00374895Collins W, Beams S, White A, et al . Nature and Origin of A-type Granites with Particular Reference to Southeastern Australia[J]. Contributions to Mineralogy and Petrology,1982 ,80 (2 ):189 −200 .[40] doi: 10.1016/0024-4937(89)90020-0Condie K C . Geochemical changes in basalts and andesites across the Archean-Proterozoic boundary: identification and significance[J]. Lithos,1989 ,23 (1-2 ):1 −18 .[41] doi: 10.2113/0530469Corfu F, Hanchar J, Hoskin P, et al . Atlas of zircon textures[J]. Reviews in Mineralogy and Geochemistry,2003 ,53 (1 ):469 −500 .[42] Davidson J, Turner S, Handley H, et al. Amphibole “sponge” in arc crust[J]? Geology, 2007, 35, 787–790. [43] doi: 10.1038/347662a0Defant M J, Drummond M S . Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature,1990 ,347 (6294 ):662 −665 .[44] Duan F H, Li Y J, Wang R, et al . Characteristics and geological significance of adakitic rocks of the dulunhe granite in the Toli area, Western Junggar[J]. Journal of Mineralogy & Petrology,2015 ,35 :4, 8 −16 .[45] Fan W M, Guo F, Wang Y J, et al. Late Mesozoic Volcanism in the Northern Huaiyang Tectono-Magmatic Belt, Central China: Partial Melts from a Lithospheric Mantle with Subducted Continental Crust Relicts. [46] doi: 10.1016/j.jpgl.2011.02.039Gagnevin D, Daly J S, Horstwood M S A, et al . Insitu zircon U-Pb, oxygen and hafnium isotopic evidence for magma mixing and mantle metasomatism in the Tuscan Magmatic Province, Italy[J]. Earth and Planetary Science Letters,2011 ,305 (1-2 ):45 −56 .[47] doi: 10.1016/j.lithos.2009.01.009Gao J, Klemd R, Long L L, et al . Adakitic signature formed by fractional crystallization: An interpretation for the Neo-Proterozoic meta-plagiogranites of the NE Jiangxi ophiolitic mélange belt, South China[J]. Lithos,2009 ,110 (1-4 ):277 −293 .[48] doi: 10.1038/nature03162Gao S, Rudnick R L, Yuan H L, et al . Recycling lower continental crust in the North China Craton[J]. Nature,2004 ,432 (7019 ):892 −897 .[49] doi: 10.1016/S0040-1951(00)00058-5Green M G, Sylvester P J, Buick R . Growth and Recycling of Early Archaean Continental Crust: Geochemical Evidence from the Coonterunah and Warrawoona Groups, Pilbara Craton, Australia[J]. Tectonophysics,2000 ,322 :69 −88 .[50] Hanyu T, Tatsumi Y, Nakai S, et al . Contribution of slabmelting and slab dehydration to magmatism in the NE Japan arc for the last 25 Myr: Constraints from geochemistry[J]. Geochemistry, Geophysics, Geosystems,2006 ,7 (8 ):1 −29 .[51] doi: 10.2113/0530027Hoskin P W O, Schaltegger U . The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry,2003 ,53 (1 ):27 −62 .[52] doi: 10.1016/j.lithos.2013.09.009Huang Z Y, Long X P, Kroner A, et al . Geochemistry, zircon U-Pb ages and Lu-Hf isotopes of early Paleozoic plutons in the northwestern Chinese Tinshan: Petrogenesis and geological implications[J]. Lithos,2013 ,182-183 :48 −66 .[53] Jia Z, Chen W, Sha X, et al . Discovery of middle permian adakitic rocks in south Qilian area, gansu and implications for tectonics and Cu (Au) mineralization[J]. Geotectonica Et Metallogenia,2017 ,41 (1 ):222 −234 .[54] Kay R W, Kay S M . Andean adakites: Three ways to make them[J]. Acta Petrologica Sinica,2002 ,18 (3 ):303 −311 .[55] doi: 10.1038/nature03971Kessel R, Schmidt M W, Ulmer P, et al . Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120-180 km depth[J]. Nature,2005 ,437 :724 −727 .[56] doi: 10.1093/petroj/38.3.371King P L, White A J R, Chappell B W, et al . Characterization and origin of aluminous A type granites from the Lachlan fold belt, south eastern Australia[J]. Journal of Petrology,1997 ,38 (3 ):371 −391 .[57] Lassiter J C, Depaolo D J . Plumers/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotope Constraint[J]. Geophysical Monograph Series,1997 ,100 :335 −355 .[58] doi: 10.1016/j.jpgl.2014.02.044Lee C T, Bachmann O . How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics[J]. Earth and Planetary Science Letters,2014 ,393 :266 −274 .[59] Long L L, Gao J, Klemd R, et al . Geochemical and geochronological studies of granitoid rocks from the Western Tianshan Orogen: Implications for continental growth in the southwestern Central Asian Orogenic Belt[J]. Lithos,2011 ,126 (3 ):321 −340 .[60] doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2Maniar P D, Piccoli P M . Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin,1989 ,101 (5 ):635 −643 .[61] Ma Q, Zheng J P, Xu Y G, et al. Are continental“adakites”derived from thickened or foundered lower crust[J]? Earth and Planetary Science Letters, 2015, 419: 125-133. [62] doi: 10.1016/0012-8252(94)90029-9Middlemost E A K . Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews,1994 ,37 (3-4 ):215 −224 .[63] Martin H, Smithies R H, Rapp R, et al . An overview of adakite, tonalite– Trondhjemite–Granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution[J]. Lithos,2005 ,79 :1, 1 −24 .[64] Moyen J F . High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature”[J]. Lithos,2009 ,112 :3, 556 −574 .[65] McBirney A R . Andesitic and rhyolitic volcanism of orogenic belts[J]. The Earth's Crust and Upper Mantle, Geophysical Monograph Series,1969 ,13 :501 −507 .[66] doi: 10.1093/petrology/42.5.877Mecdonald R, Rogers N W, Fitton J G, et al . Plume-Lithosphere Interactions in the Generation of the Basalts of the Kenya Rift, East Afica[J]. Journal of Petrology,2001 ,42 (5 ):877 −900 .[67] doi: 10.1093/petrology/36.4.891Rapp R P, Watson E B . Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling[J]. Journal of Petrology,1995 ,36 :891 −931 .[68] doi: 10.1093/petrology/25.4.956Pearce J A, Harris N B W, Tindle A G . Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology,1984 ,25 (4 ):956 −983 .[69] Pearce J A, Cann J R . Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses[J]. Earth and Planetary Science Letters,1993 ,19 :290 −300 .[70] doi: 10.2113/gsecongeo.102.4.537Richards J P, Kerrich R . Special paper: Adakite-like rocks: Their diverse origins and questionable role in metallogenesis[J]. Economic Geology,2007 ,102 (4 ):537 −576 .[71] doi: 10.1016/0024-4937(89)90028-5Rickwood P C . Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos,1989 ,22 (4 ):247 −263 .[72] doi: 10.1016/j.jpgl.2004.09.020Schmidt M W, Vielzeuf D, Auzanneau E . Melting and dissolution of subducting crust at high pressures: the key role of white mica[J]. Earth and Planetary Science Letters,2004 ,228 (1-2 ):65 −84 .[73] doi: 10.5575/geosoc.85.571Setsuya Nakada and Masaki Takahashi . Regional variationin chemistry of the Miocene intermediate to felsic magmas in the Outer Zone and the Setouchi Province of Southwest Japan[J]. The Geological Society of Japan,1979 ,85 (9 ):571 −582 .[74] doi: 10.1007/s004100050155Stern C R, Kilian R . Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone[J]. Contributions to Mineralogy and Petrology,1996 ,123 (3 ):263 −281 .[75] doi: 10.1144/GSL.SP.1989.042.01.19Sun S S, McDonough W F . Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds. )[J]. Magmatism in the Ocean Basins. Geological Society, London, Special Publication,1989 ,42 (1 ):313 −345 .[76] doi: 10.1016/j.lithos.2010.07.010Tang G J, Wang Q, Wyman D A, et al . Geochronology and geochemistry of Late Paleozoic magmatic rocks in the Lamasu–Dabate area, northwestern Tianshan (west China): Evidence for a tectonic transition from arc to post-collisional setting[J]. Lithos,2010 ,119 (3-4 ):393 −411 .[77] doi: 10.1016/j.jseaes.2013.03.022Tang G J, Wang Q, Wyman D A, et al . Petrogenesis of gold-mineralized magmatic rocks of the Taerbieke area, northwestern Tianshan(western China): Constraints from geochronology, geochemistry and Sr-Nd-Pb-Hf isotopic compositions[J]. Journal of Asian Earth Sciences,2013 ,74 :113 −128 .[78] doi: 10.1016/0012-821X(82)90008-5Tatsumi Y, Ishizaka K . Origin of high-magnesian andesites in the Setouchi volcanic belt, Southwest Japan, petrographical and chemical characteristics[J]. Earth Planetary Science Letters,1982 ,60 :293 −304 .[79] doi: 10.1029/JB088iB07p05815Tatsumi Y, Sakuyama M, Fukuyama H, et al . Generation of arc basalt magmas and thermal structure of the mantle wedge in subduction zones[J]. Journal of Geophysics Research: Solid Earth,1983 ,88 (B7 ):5815 −5825 .[80] Tiepolo M, Oberti R, Zanetti A, et al . Trace-element partitioning between amphibole and silicate melt[J]. Reviews in Mineralogy and Geochemistry,2007 ,67 :1, 417 −452 .[81] doi: 10.1016/j.jseaes.2011.11.005Wang B, Jahn B M, Shu L S, et al . Middle-Late Ordovician arc-type plutonism in the NW Chinese Tianshan: Implication for the accretion of the Kazakhstan continent in Central Asia[J]. Journal of Asian Earth Sciences,2012 ,49 :40 −53 .[82] Wang D B, Luo L, Tang Y, et al . Zircon U-Pb dating and petrogenesis of early paleozoic adakites from the niujingshan ophiolitic mélange in the changning-menglian suture zone and its geological implications[J]. Acta Petrologica Sinica,2016 ,32 (8 ):2317 −2329 .[83] Wang J, Li Y J, Li H Y, et al . Discovery of early permian intra-oceanic arc adakite in the meilaotewula ophiolite, inner mongolia and its evolution model[J]. Acta Geologica Sinica,2017 ,91 :8, 1776 −1795 .[84] doi: 10.1002/gj.3210Wang M, Zhang J J, Pei X Z, et al . Detrital zircon U–Pb–Hf isotopes study of the Lower Carboniferous Anjihai Formation from the northern margin of the Yili Block, NW China[J]. Geological Journal,2018 ,53 :223 −236 .[85] doi: 10.1130/G21522.1Wang Q, McDermott F, Xu J F, et al . Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting[J]. Geology,2005 ,33 (6 ):465 −468 .[86] Wang X S, Cai K D, Sun M, et al. Evolution of Late Paleozoic Magmatic Arc in the Yili Block, NW China: Implications for Oroclinal Bending in the Western Central Asian Orogenic Belt[J]. Tectonics, 2020, Vol. 39(12). [87] doi: 10.1007/BF00402202Whalen J B, Currie K L, Chappell B W . A-type Granites: Geochemical Characteristics, Discriminatuon and Petrogenesis[J]. Contributions to Mineralogy and Petrology,1987 ,95 (4 ):407 −419 .[88] White A J R, Chappell B W . Granitoid Types and their Distribution in the Lachlan Fold Belt, Southeastern Australia[J]. Geological Society of America Memoir,1983 ,159 (12 ):21 −34 .[89] doi: 10.1093/petroj/39.9.1641Woodhead J D, Eggins S M, Johnson R W . Magma genesis in the New Britain island arc: Further insights into melting and mass transfer processes[J]. Journal of Petrology,1998 ,39 (9 ):1641 −1668 .[90] doi: 10.1017/S0016756800058222Wright J B . A simple alkalinity ratio and its application to questions of non-orogenic granite genesis[J]. Geological Magazine,1969 ,106 (4 ):370 −384 .[91] doi: 10.1016/j.lithos.2015.12.029Wu T, Xiao L, Wilde S A, et al . Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry of the Ganluogou dioritic complex in the northern Triassic Yidun arc belt, Eastern Tibetan Plateau: Implications for the closure of the Garzê-Litang Ocean[J]. Lithos,2016 ,248-251 :94 −108 .[92] Xia L, Xu X, Li X, et al . Reassessment of petrogenesis of Carboniferous-Early Permian rift-related volcanic rocks in the Chinese Tianshan and its neighboring areas[J]. Geoscience Frontiers,2012 ,3 (4 ):445-471 .[93] Xiao W J, Windley B F, Allen M B, et al . Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage[J]. Gondwana Research,2013 ,23 (4 ):1316 −1341 .[94] Xiao W J, Santosh M . The western central Asian orogenic belt: A window to accretionary orogenesis and continental growth[J]. Gondwana Research,2014 ,25 (4 ):1429 −1444 .[95] doi: 10.1016/j.chemgeo.2005.01.014Xiong X L, Adam J, Green T H . Rutilestability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis[J]. Chemical Geology,2005 ,218 (3-4 ):339 −359 .[96] doi: 10.1016/j.lithos.2015.07.001Xu W C, Zhang H F, Luo B J, et al . Adakite-like geochemical signature produced by amphibole-dominated fractionation of arc magmas: An example from the late cretaceous magmatism in gangdese belt, south Tibet[J]. Lithos,2015 ,232 :197 −210 .[97] doi: 10.1016/j.precamres.2013.03.004Zhang C, Holtz F, Koepke J, et al . Constraints from experimental melting of amphibolite on the depth of formation of garnet-rich restites, and implications for models of Early Archean crustal growth[J]. Precambrian Research,2013 ,231 :206 −217 .[98] doi: 10.1080/00206814.2019.1702592Zhang L Y, Li S C, Zhao Q Y . A review of research on adakites[J]. International Geology Review,2021 ,63 (1 ):47 −64 .[99] doi: 10.1016/j.lithos.2023.107078Zhang Y S, Zhang Y M, Gu X X, et al . Zircon U-Pb geochronology and Sr-Nd-Pb-Hf isotope geochemistry of the Dahuabei pluton from the northern margin of North China Craton: Implications for petrogenesis, tectonic setting and Au-Mo mineralization[J]. Lithos,2023 ,442-443 :107078 .[100] doi: 10.1007/BF03182672Zhu Y F, Zhang L F, Gu L B, et al . The zircon SHRIMP chronology and trace element geochemistry of the Carboniferous volcanic rocks in western Tianshan Mountains[J]. Chinese Science Bulletin,2005 ,50 (19 ):2201 −2212 . -