延安芦村二号煤矿薄煤层构造与煤厚稳定性定量评价

李峰, 贺延军, 冯英, 马锐, 史康, 郭晨. 2025. 延安芦村二号煤矿薄煤层构造与煤厚稳定性定量评价. 西北地质, 58(2): 261-273. doi: 10.12401/j.nwg.2024131
引用本文: 李峰, 贺延军, 冯英, 马锐, 史康, 郭晨. 2025. 延安芦村二号煤矿薄煤层构造与煤厚稳定性定量评价. 西北地质, 58(2): 261-273. doi: 10.12401/j.nwg.2024131
LI Feng, HE Yanjun, FENG Ying, MA Rui, SHI Kang, GUO Chen. 2025. Quantitative Evaluation of the Structure and Coal Thickness Stability of the Thin Coal Seam in Lucun No. 2 Coal Mine, Yan’an. Northwestern Geology, 58(2): 261-273. doi: 10.12401/j.nwg.2024131
Citation: LI Feng, HE Yanjun, FENG Ying, MA Rui, SHI Kang, GUO Chen. 2025. Quantitative Evaluation of the Structure and Coal Thickness Stability of the Thin Coal Seam in Lucun No. 2 Coal Mine, Yan’an. Northwestern Geology, 58(2): 261-273. doi: 10.12401/j.nwg.2024131

延安芦村二号煤矿薄煤层构造与煤厚稳定性定量评价

  • 基金项目: 陕西省重点研发计划项目“极薄煤层矿区产业集群绿色智能化升级示范工程”(2022GD-TSLD-64)资助。
详细信息
    作者简介: 李峰(1989−),男,工程师,硕士,主要从事煤矿安全生产管理工作。E−mail:511139550@qq.com
  • 中图分类号: P542+5

Quantitative Evaluation of the Structure and Coal Thickness Stability of the Thin Coal Seam in Lucun No. 2 Coal Mine, Yan’an

  • 薄煤层条件下的煤炭开采对精确掌握煤厚与构造的空间变化规律提出了更高要求。陕西延安黄陵矿区北部发育薄煤层,对其构造发育特点与煤厚空间变化规律认识不清,限制了煤炭高效开采与智能化矿井建设。笔者以延安芦村二号煤矿主采的2号煤层为研究对象,基于煤层底板标高数据,开展趋势面分析与构造曲率分析,揭示构造展布与发育特点;基于网格剖分法计算了775个网格节点的煤厚变异系数,揭示煤层厚度及其稳定性变化规律,克服了传统煤厚变异系数单一评价值对揭示煤厚稳定性空间变化的不足。结果显示,芦村二号煤矿2号煤层属于较稳定煤层,整体呈一走向NE、倾向NW的单斜构造,在此背景下,叠加了轴向为NW的次级波状起伏。新识别并圈定了3处典型构造,分别为:煤矿东北部发育一局部凹陷,中北部发育一局部凸起,煤矿南部发育一个呈NW—SE向展布的马鞍状构造。在马鞍状构造北部叠加了勘探与采掘期间发现的若干断层,使得煤矿南部构造相对复杂。煤厚变异系数介于0.16%~15.24%,平均为1.98%,呈现从北向南逐渐增加的趋势,在西南部12-7和12-8号钻孔附近达到最大值。在可采范围内,煤层厚度稳定性由NE向SW逐步变差,马鞍状构造与煤厚变异系数高值区高度吻合。基于煤厚及煤厚变异系数分级,识别出6类煤厚及稳定性组合方案,实现了煤厚及稳定性的平面分区评价,揭示可采范围内东部的开采条件好于西部,西南部最差,源于马鞍状构造加剧了煤厚变化。研究成果可为薄煤层安全、高效、精准开采提供地质保障。

  • 加载中
  • 图 1  芦村二号煤矿2号煤层底板等高线与揭露构造示意

    Figure 1. 

    图 2  2号煤层底板标高2次趋势值等值线图(a)和剩余值等值线图(b)

    Figure 2. 

    图 3  平均曲率等值线图

    Figure 3. 

    图 4  高斯曲率等值线图

    Figure 4. 

    图 5  基于曲率分析的构造发育特点

    Figure 5. 

    图 6  煤厚频率分布图

    Figure 6. 

    图 7  煤层厚度等值线图

    Figure 7. 

    图 8  煤厚变异系数计算网格剖分示意

    Figure 8. 

    图 9  煤厚变异系数频率分布图

    Figure 9. 

    图 10  煤厚变异系数等值线图

    Figure 10. 

    图 11  煤厚及稳定性组合分区

    Figure 11. 

    图 12  煤厚分区与构造叠加图

    Figure 12. 

    表 1  煤厚及稳定性组合方案

    Table 1.  Combination scheme of coal thickness and stability

    煤厚分类 变异系数
    分类
    组合
    方案
    描述
    Ⅰ(>0.9 m) Ⅰ(<1%) Ⅰ-Ⅰ 煤厚大,稳定
    Ⅱ(0.8~0.9 m) Ⅱ(1%~2%) Ⅰ-Ⅱ 煤厚大,较稳定
    Ⅲ(>2%) Ⅰ-Ⅲ 煤厚大,较不稳定
    Ⅱ-Ⅰ 煤厚稍小,稳定
    Ⅱ-Ⅱ 煤厚稍小,较稳定
    Ⅱ-Ⅲ 煤厚稍小,较不稳定
    下载: 导出CSV
  • [1]

    曹代勇, 周云霞, 魏迎春. 矿井地质构造定量评价信息系统的开发及应用[J]. 煤炭学报, 2002, 27(4): 379−382. doi: 10.3321/j.issn:0253-9993.2002.04.010

    CAO Daiyong, ZHOU Yunxia, WEI Yingchun. Development and application of quantitative evaluation information system for mine geological structure[J]. Journal of China Coal Society,2002,27(4):379−382. doi: 10.3321/j.issn:0253-9993.2002.04.010

    [2]

    常会珍, 郝春生, 张蒙, 等. 煤层气开发地质信息在完善矿井地质保障中的应用[J]. 煤炭技术, 2018, 37(2): 126−128.

    CHANG Huizhen, HAO Chunsheng, ZHANG Meng, et al. Application of Coalbed Methane Development Geological Information in Perfecting Mine Geological Guarantee[J]. Coal Technology,2018,37(2):126−128.

    [3]

    段中会, 马丽, 高阳, 等. 煤矿复杂地质条件精细预测预报技术及应用[J]. 中国煤炭地质, 2017, 29(9): 53−60. doi: 10.3969/j.issn.1674-1803.2017.09.11

    DUAN Zhonghui, MA Li, GAO Yang, et al. Precise Prediction and Forecasting Technologies and Their Application under Coalmine Complex Geological Condition[J]. Coal Geology of China,2017,29(9):53−60. doi: 10.3969/j.issn.1674-1803.2017.09.11

    [4]

    高文华, 周利华. 趋势面分析在洪山殿矿区构造和厚煤带分布研究中的应用[J]. 湖南地质, 1997(3): 59−63.

    GAO Wenhua, ZHOU Lihua. Application of Trend Analysis to the Study of Structure and Thickness of Coal Layer in Hongshandian Mine[J]. Hunan Geology,1997(3):59−63.

    [5]

    郭晨, 夏玉成, 孙学阳, 等. 高瓦斯矿井采煤工作面瓦斯地质分级评价方法与实践[J]. 煤炭学报, 2019, 44(8): 2409−2418.

    GUO Chen, XIA Yucheng, SUN Xueyang, et al. Method and practice of gas geological grading evaluation on coal mining face of high gas mine[J]. Journal of China Coal Society,2019,44(8):2409−2418.

    [6]

    黄建国, 崔春龙, 杨剑, 等. 西昆仑库斯拉甫一带侏罗纪断陷盆地演化及成煤环境分析[J]. 西北地质, 2016, 49(4): 201−206. doi: 10.3969/j.issn.1009-6248.2016.04.012

    HUANG Jianguo, CUI Chunlong, YANG Jian, et al. Evolution and Coal-forming Environment Analysis of Jurassic Rift Basin in Kusilafu Area, Western Kunlun[J]. Northwestern Geology,2016,49(4):201−206. doi: 10.3969/j.issn.1009-6248.2016.04.012

    [7]

    李克庆, 张延凯编. 数学地质[M]. 北京: 冶金工业出版社, 2015.

    LI Keqing,ZHANG Yankai,Ed. Mathematical Geology[M]. Beijing: Metallurgical Industry Press,2015.

    [8]

    李亮, 田增辉. 综合地质保障技术在崔木煤矿开采中的应用[J]. 陕西煤炭, 2018, 37(6): 113−116. doi: 10.3969/j.issn.1671-749X.2018.06.028

    LI Liang, TIAN Zenghui. Application of comprehensive geological guarantee technology in the mining of Cuimu coal mine[J]. Shaanxi Coal,2018,37(6):113−116. doi: 10.3969/j.issn.1671-749X.2018.06.028

    [9]

    李盛富, 陈洪德, 周剑, 等. 新疆伊犁盆地南缘中新生代以来构造演化与聚煤规律研究[J]. 西北地质, 2016, 49(2): 220−228. doi: 10.3969/j.issn.1009-6248.2016.02.021

    LI Shengfu, CHEN Hongde, ZHOU Jian, et al. Tectonic Evolution and Coal Accumulation about the Southern Margin of Yili Basin in Xinjiang since Middle Cenozoic Era[J]. Northwestern Geology,2016,49(2):220−228. doi: 10.3969/j.issn.1009-6248.2016.02.021

    [10]

    李增学. 煤地质学[M].北京:地质出版社, 2009.

    LI Zengxue. Coal Geology [M].Beijing:Geological Publishing House,2009.

    [11]

    李志勇, 曾佐勋, 罗文强. 构造面曲率分析及三维可视化软件3DCAVF开发与实践[J]. 中山大学学报(自然科学版), 2003, 42(5): 101−104. doi: 10.3321/j.issn:0529-6579.2003.05.027

    LI Zhiyong, ZENG Zuoxun, LUO Wenqiang. Development and practice of 3DCAVF software for structural surface curvature analysis and 3D visualization[J]. Acta Scientiarum Naturalium Universitatis Sunyatsen,2003,42(5):101−104. doi: 10.3321/j.issn:0529-6579.2003.05.027

    [12]

    刘峰. 适应保护层开采的薄煤层采煤机研制与应用[J]. 煤矿机械, 2023, 44(9): 66−67.

    LIU Feng. Development and Application of Thin Coal Seam Shearer Suitable for Protective Layer Mining[J]. Coal Mine Machinery,2023,44(9):66−67.

    [13]

    刘伟, 吴基文, 胡儒, 等. 矿井构造复杂程度定量评价与涌(突)水耦合分析[J]. 工矿自动化, 2019, 45(12): 17−22.

    LIU Wei, WU Jiwen, HU Ru, et al. Quantitative evaluation of mine structure complexity and its coupling analysis with water bursting[J]. Industry and Mine Automation,2019,45(12):17−22.

    [14]

    马慧妍. 趋势面分析在瓦窑堡油田油藏分布规律研究中的应用[J]. 地质学刊, 2023, 47(2): 175−181. doi: 10.3969/j.issn.1674-3636.2023.02.009

    MA Huiyan. Application of trend surface analysis to reservoir distribution in Wayaopu oilfield[J]. Journal of Geology,2023,47(2):175−181. doi: 10.3969/j.issn.1674-3636.2023.02.009

    [15]

    马田生, 张林山. 趋势面分析在山西朔州王坪井田构造研究中的应用[J]. 新疆地质, 2004, 22(1): 107−110. doi: 10.3969/j.issn.1000-8845.2004.01.021

    MA Tiansheng, ZHANG Linshan. Application of trend surface analysis to structural study of Wangping mine field in Shuozhou, Shanxi[J]. Xinjiang Geology,2004,22(1):107−110. doi: 10.3969/j.issn.1000-8845.2004.01.021

    [16]

    彭涛, 王生全, 樊敏, 等. 基于趋势面分析法的下峪口井田褶皱构造发育新认识[J]. 矿业安全与环保, 2017, 44(3): 77−81. doi: 10.3969/j.issn.1008-4495.2017.03.019

    PENG Tao, WANG Shengquan, FAN Min, et al. New Cognition on Development of Folded Structure in Xiayukou Mine Based on Trend Surface Analysis[J]. Mining Safety and Environmental Protection,2017,44(3):77−81. doi: 10.3969/j.issn.1008-4495.2017.03.019

    [17]

    秦勇, 姜波, 王继尧, 等. 沁水盆地煤层气构造动力条件耦合控藏效应[J]. 地质学报, 2008(10): 1355−1362. doi: 10.3321/j.issn:0001-5717.2008.10.007

    QIN Yong, JIANG Bo, WANG Jiyao, et al. Coupling Control of Tectonic Dynamical Conditions to Coalbed Methane Reservoir Formation in the Qinshui Basin, Shanxi, China[J]. Acta Geologica Sinica,2008(10):1355−1362. doi: 10.3321/j.issn:0001-5717.2008.10.007

    [18]

    屈争辉, 姜波, 汪吉林, 等. 不同煤级煤大分子结构对应力-应变环境的响应分析[J]. 中国矿业大学学报, 2015, 44(4): 656−663.

    QU Zhenghui, JIANG Bo, WANG Jilin et al. Reaction of macromolecular structure of coals of various ranks to stress-strain environments[J]. Journal of China University of Mining and Technology,2015,44(4):656−663.

    [19]

    苏德华. 山西灵石荡荡岭煤矿矿井构造特征及复杂程度评价[D]. 徐州: 中国矿业大学, 2018.

    SU Dehua. Characteristics and Evaluation of Geological Structure of Dangdangling Coal Mine in Shanxi Province[D]. Xuzhou:China University of Mining and Technology, 2018.

    [20]

    孙洪泉, 陆国桢, 邵玉宏, 等. 判别分析法在矿井地质构造预测中的应用[J]. 煤炭学报, 1996, 22(5): 9−12.

    SUN Hongquan, LU Guozhen, SHAO Yuhong, et al. Application of discriminant analysis method in prediction of geological structures in coal mines[J]. Journal of China Coal Society,1996,22(5):9−12.

    [21]

    唐恩贤. 黄陵矿业公司智能化开采核心技术及其应用实践[J]. 中国煤炭, 2019, 45(4): 13−18+113. doi: 10.3969/j.issn.1006-530X.2019.04.002

    TANG Enxian. Core technology of intelligent mining in Huangling Mining Company and its application practice[J]. China Coal,2019,45(4):13−18+113. doi: 10.3969/j.issn.1006-530X.2019.04.002

    [22]

    王成祥, 张玉良. 让井下无人采煤成为引领未来煤炭发展新坐标——陕煤黄陵矿业公司实施智能化开采的调查与思考[J]. 陕西煤炭, 2016, 35(5): 1−6+14. doi: 10.3969/j.issn.1671-749X.2016.05.001

    WANG Chengxiang, ZHANG Yuliang. Making the unmanned mining as the new coordinate of coal industry development in the future—The survey and thinking on the implementation of intelligent mining in Shaanxi Huangling Mining Corp[J]. Shaanxi Coal,2016,35(5):1−6+14. doi: 10.3969/j.issn.1671-749X.2016.05.001

    [23]

    王红霞. 窑街煤田外围赋煤特征及找煤方向[J]. 西北地质, 2015, 48(1): 191−195.

    WANG Hongxia. Coal-Bearing Features and Propecting Orientation in Peripheral Yaojie Coalfield[J]. Northwestern Geology,2015,48(1):191−195.

    [24]

    汪吉林. 矿井构造定量评价理论与方法研究——以鲍店矿为例[D]. 徐州: 中国矿业大学, 2005.

    WANG Jilin. Research on theory and method of quantitative evaluation of mine structure -- taking Baodian Mine as an example [D]. Xuzhou: China University of Mining and Technology, 2005.

    [25]

    王双明, 孙强, 袁士豪, 等. 论煤–水–土多资源协调开发[J]. 西北地质, 2024, 57(5): 1−10. doi: 10.12401/j.nwg.2024069

    WANG Shuangming, SUN Qiang, YUAN Shihao, et al. On the Coordinated Development of Coal-Water-Soil Mul tiple Resources[J]. Northwestern Geology,2024,57(5):1−10. doi: 10.12401/j.nwg.2024069

    [26]

    王双明, 孙强, 乔军伟, 等. 论煤炭绿色开采的地质保障[J]. 煤炭学报, 2020, 45(1): 8−15.

    WANG Shuangming, SUN Qiang, QIAO Junwei, et al. Geological guarantee of coal green mining[J]. Journal of China Coal Society,2020,45(1):8−15.

    [27]

    王文平, 朱良嘉. 动态地质模型规划开采技术在薄煤层中的应用[J]. 陕西煤炭, 2023, 42(6): 176−179. doi: 10.3969/j.issn.1671-749X.2023.06.034

    WANG Wenping, ZHU Liangjia. Application of dynamic geological model planning mining technology in thin coal seam[J]. Shaanxi Coal,2023,42(6):176−179. doi: 10.3969/j.issn.1671-749X.2023.06.034

    [28]

    王晓. 芦村二号煤矿开拓方式的比选确定研究[J]. 山东煤炭科技, 2018(6): 182−184. doi: 10.3969/j.issn.1005-2801.2018.06.076

    WANG Xiao. Contrast and Determination of the Development Form of Lucun No. 2 Coal Mine[J]. Shandong Coal Science and Technology,2018(6):182−184. doi: 10.3969/j.issn.1005-2801.2018.06.076

    [29]

    王雅春, 油气数学地质[M]. 北京: 石油工业出版社, 2015.

    WANG Yachun, Mathematical Geology of Oil and Gas [M]. Beijing: Petroleum Industry Press,2015.

    [30]

    吴勇, 马腾, 王玉, 等. 移动趋势面法识别微幅度构造的多参数分析[J]. 西南石油大学学报(自然科学版), 2017, 39(3): 34−46.

    WU Yong, MA Teng, WANG Yu, et al. Multi-parameter analysis of micro amplitude structures by moving trend surface method[J]. Journal of Southwest Petroleum University (Science and Technology Edition),2017,39(3):34−46.

    [31]

    夏玉成, 孙廷臣, 梁倩文, 等. 韩城矿区纵弯褶皱的几何学特征及其形成演化机理[J]. 煤炭学报, 2018, 43(3): 801−809.

    XIA Yucheng, SUN Tingchen, LIANG Qianwen, et al. Geometry and geodynamic mechanism of buckle folds in Hancheng mining area[J]. Journal of China Coal Society,2018,43(3):801−809.

    [32]

    徐凤银, 龙荣生, 夏玉成, 等. 矿井地质构造定量评价及其预测[J]. 煤炭学报, 1991, 17(4): 93−102.

    XU Fengyin, LONG Rongsheng, XIA Yucheng, et al. Quantitative evaluation and prediction of mine geological structure[J]. Journal of China Coal Society,1991,17(4):93−102.

    [33]

    杨帆, 李艳清. 浅析黄陵矿区瓦斯地质规律[J]. 陕西煤炭, 2019, 38(1): 88−90.

    YANG Fan, LI Yanqing. Research of gas geological law in Huangling mining area[J]. Shaanxi Coal,2019,38(1):88−90.

    [34]

    杨燕敏. 薄煤层综采工作面智能化控制技术应用[J]. 江西煤炭科技, 2023(4): 244−246. doi: 10.3969/j.issn.1006-2572.2023.04.075

    YANG Yanmin. Key Technology Application of Intelligent Mining in Thin-seam Fully-mechanized Working Face[J]. Jiangxi Coal Science and Technology,2023(4):244−246. doi: 10.3969/j.issn.1006-2572.2023.04.075

    [35]

    杨雨晨. 薄煤层采煤机智能控制关键技术研究[J]. 煤, 2023, 32(10): 43−46. doi: 10.3969/j.issn.1005-2798.2023.10.011

    YANG Yuchen. Research on Key Technology of Quick Control in Thin Seam Mining[J]. Coal,2023,32(10):43−46. doi: 10.3969/j.issn.1005-2798.2023.10.011

    [36]

    周云霞, 曹代勇. 矿井地质构造定量评价模型探讨[J]. 煤田地质与勘探, 2001(2): 16−19. doi: 10.3969/j.issn.1001-1986.2001.02.006

    ZHOU Yunxia, CAO Daiyong. Discussion on quantitative evaluation model of mine geological structure[J]. Coal Geology and Exploration,2001(2):16−19. doi: 10.3969/j.issn.1001-1986.2001.02.006

    [37]

    Roberts A. Curvature attributes and their application to 3D interpreted horizons[J]. First Break,2001,19(2):85−100. doi: 10.1046/j.0263-5046.2001.00142.x

  • 加载中

(12)

(1)

计量
  • 文章访问数:  54
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2024-08-07
修回日期:  2024-12-30
录用日期:  2024-12-31
刊出日期:  2025-04-20

目录