Study on Helium Reservoir Forming Mechanism of Weiyuan Gas Field and Jinqiu Gas Field in Sichuan Basin
-
摘要:
四川盆地是中国的天然气主力产区之一,天然气伴生气的氦气资源也广泛分布,其中的威远富氦天然气田是中国第一个工业利用的氦气田,威远天然气中氦含量最高可达0.342%;金秋气田是盆地内近年发现的第二个含氦较高的天然气田,氦气平均丰度为0.07%。笔者通过威远、金秋气田岩样、气样采样分析,与前人研究成果对比分析,研究表明威远气田和金秋气田的成藏机制有所不同:威远气田氦气主力产层为震旦系灯影组,震旦系氦气平均含量为0.28%,氦气主要来源于基底花岗岩,以地层水为载体向上运移;金秋气田氦气主要产于侏罗系沙溪庙组,含量最高的井为0.2%,存在多套氦源岩,沙溪庙组砂岩内源氦气贡献率最高,氦气以烃类气为载气运移,岩性气藏的差异聚集导致氦气含量的强非均质性。
Abstract:The Sichuan Basin is one of the main natural gas production areas in China, and the helium resources of natural gas associated gas are widely distributed. Among them, the Weiyuan Rich Helium Natural Gas Field is the first helium gas field to be industrially utilized in China, with the highest helium content in Weiyuan natural gas reaching 0.342%; Jinqiu gas field is the second natural gas field with high helium content discovered in the basin in recent years, with an average helium abundance of 0.07%. This article analyzes rock and gas samples from Weiyuan and Jinqiu gas fields, and compares them with previous research results. The study shows that the reservoir formation mechanisms of Weiyuan gas field and Jinqiu gas field are different: the main production layer of helium in Weiyuan gas field is the Dengying Formation of the Sinian system, with an average helium content of 0.28%. Helium mainly comes from the basement granite and migrates upward with formation water as a carrier; The helium gas in Jinqiu gas field is mainly produced in the Jurassic Shaximiao Formation, with the highest content of 0.2% in the well. There are multiple sets of helium source rocks, and the Shaximiao Formation sandstone has the highest contribution rate of endogenous helium gas. Helium gas is transported by hydrocarbon gas as the carrier gas, and the differential accumulation of lithological gas reservoirs leads to strong heterogeneity in helium content.
-
Key words:
- Sichuan basin /
- Weiyuan gas field /
- Jinqiu gas field /
- helium accumulation mechanism
-
-
表 1 威远气田岩样铀、钍含量数据表
Table 1. Uranium and thorium content data table of rock samples from Weiyuan Gas Field
井号 深度(m) 层位 岩性 Th(10−6) U(10−6) W201# 2808.77 ~2808.96 寒武系筇竹寺组 含有机质细砂粉砂页岩 10.00 19.73 W201# 2772.35 ~2772.51 寒武系筇竹寺组 钙质粉砂岩 4.31 1.04 W201# 1388.25 志留系龙马溪组 含粉砂黏土岩 16.40 2.85 W201# 1371.23 ~1371.39 二叠系栖霞组–梁山组 含有机质生屑泥晶灰岩 1.29 3.49 W201# 2823.35 ~2823.74 震旦系灯影组四段 细粉晶白云岩 0.58 2.56 W201# 2819.59 ~2819.90 震旦系灯影组四段 细晶白云岩 1.74 6.12 WY1H# 4304.32 ~4304.52 寒武系筇竹寺-2亚段 含有机质黏土质粉砂页岩 8.69 7.38 WY1H# 4287.25 寒武系筇竹寺-2亚段 含有机质泥质粉砂页岩 7.52 4.15 W4# 3317.18 ~3317.23 震旦系灯影组 细晶白云岩 0.31 0.72 W4# 3339 ~3339.26 震旦系灯影组 重结晶亮晶含凝块砂屑白云岩 0.20 0.20 W4# 3380.04 ~3380.22 震旦系灯影组 似皮壳状细粉晶白云岩 0.52 0.77 W203# 2874.58 ~2874.86 二叠系栖霞组 矿化生屑泥晶灰岩 3.35 3.17 W203# 3161.64 ~3161.73 志留系龙马溪组 含有机质钙质砂质页岩 12.3 7.65 W203# 2887.98 志留系龙马溪组 含粉砂黏土岩 13.00 7.89 W203# 3179.06 ~3179.25 奥陶系宝二段 含生屑泥晶灰岩 5.90 0.43 W207# 1864.86 ~1864.95 奥陶系宝塔组 含生屑泥晶灰岩 6.51 0.67 W207# 3242.29 ~3242.41 寒武系筇竹寺组 含有机质砂质页岩 8.90 49.20 W207# 1860.84 ~1861.14 奥陶系五峰组 含铁粉砂质黏土质页岩 6.17 1.85 W207# 3176.56 ~3176.84 寒武系筇竹寺组 矿化细粒长石砂岩 7.48 1.67 W207# 1844.15 ~1844.29 志留系龙马溪组 含有机质黏土砂质页岩 21.40 92.30 W207# 1854.20 ~1854.60 奥陶系五峰组 亮晶含生屑砂屑灰岩 0.85 4.73 W117-1 3625.85 基底 条带状含粉细砂质泥质板岩 7.03 4.62 W117-2 3679.17 基底 碎裂化碱长花岗岩 25.50 4.47 W117-3 3637.44 基底 中粗粒正长花岗岩 21.20 5.04 W117-4 3378.75 灯影组二段下亚段 碎裂化溶蚀孔洞状泥晶白云岩 1.57 0.76 宝兴县 黄水河群 揉皱绢云千枚岩 7.17 1.51 雅安天全小河乡 黄水河群–峨边群 中细粒花岗闪长岩 15.20 1.72 表 2 威远气田气样氦同位素数据表
Table 2. Helium isotope data table of gas samples from Weiyuan Gas Field
井号 层位 3He/4He(10−8) 幔源氦份额 壳源氦份额 W201井 寒武系筇竹寺组 3.35 0.12% 99.88% Z201井 寒武系筇竹寺组 2.84 0.08% 99.92% W201-H3井 寒武系筇竹寺组 2.67 0.06% 99.94% W201-H1井 志留系龙马溪组 3.92 0.17% 99.83% W108井 震旦系灯影组 3.87 0.08% 99.92% W108井 震旦系灯影组 4.30 0.21% 99.79% WY36井 二叠系茅口组 3.17 0.11% 99.89% WY36井 二叠系茅口组 3.09 0.10% 99.90% 表 3 威远气田取样井氦气检测数据
Table 3. Helium gas detection data from sampling wells in Weiyuan Gas Field
井名 层位 氦气(%) WY36 二叠系茅口组 0.051 WY36 二叠系茅口组 0.149 W204H12-8 志留系龙马溪组 0.022 W204H12-8 志留系龙马溪组 0.022 W201-H1 志留系龙马溪组 0.102 W201-H1 志留系龙马溪组 0.097 W201 寒武系筇竹寺组 0.045 W201 寒武系筇竹寺组 0.045 W201-H3 寒武系筇竹寺组 0.131 W201-H3 寒武系筇竹寺组 0.135 W108井 震旦系灯影组 0.112 W108井 震旦系灯影组 0.112 表 4 金秋气田沙溪庙组岩样铀、钍含量
Table 4. Uranium and thorium contents in rock samples of Shaximiao Formation, Jinqiu Gas Field
序号 原编号 岩石薄片定名 Th(10−6) U(10−6) 1 JQ 1#1970-1971 细中粒岩屑长石砂岩 6.59 1.18 2 JQ 1#1693-1695 含铁粉砂质黏土岩 15.50 3.23 3 JQ 12#2588-2590 中细粒岩屑长石砂岩 15.00 5.00 4 JQ 12#2594-2595 含铁黏土质细砂粉砂岩 17.10 3.09 5 JQ 12#2171.23-2172.69 含铁粉砂质黏土岩 19.10 3.74 6 JQ 12#2592-2594 粉砂质黏土岩 15.80 3.66 7 JQ 12#2146.61-2148.2 细中粒岩屑长石砂岩 9.60 1.52 8 JQ 13#1770.52-1772.49 细粒岩屑长石砂岩 10.50 2.10 9 QL 18#2109.75-2109.96 黏土质细粒岩屑砂岩 12.90 4.41 10 QL 18#2114.04-2114.18 含黏土粉砂细砂岩 16.30 9.56 11 QL 18#2104.97 粗中粒岩屑长石砂岩 11.60 5.20 12 QL18#2117.6-2117.7 黏土质粉砂细砂岩 12.80 4.27 沙溪庙最大值 19.10 9.56 沙溪庙最小值 6.59 1.18 沙溪庙平均值 13.57 3.91 砂岩参考值 1.70 0.45 表 5 金秋气田野外岩样铀、钍含量
Table 5. Uranium and thorium content of field rock samples from Jinqiu Gas Field
检测编号 岩矿鉴定定名 Th(10−6) U(10−6) 35 蚀变中细粒二长花岗岩 6.16 1.04 36 中细粒二长花岗岩 3.92 0.63 38 蚀变细粒辉长岩 2.03 2.93 39 蚀变黑云斜长片麻岩 4.71 0.83 40 含生屑粉泥晶灰岩 4.90 2.35 41 含有机质粉砂黏土质页岩 14.30 16.30 表 6 金秋气田沙溪庙组气样氦同位素数据表
Table 6. Helium isotope data of gas samples from Shaximiao Formation, Jinqiu Gas Field
井号 层位 3He/4He
(10−8)幔源氦份额
(%)壳源氦份额
(%)QL10-H1 沙溪庙组 2.61 0.05 99.95 QL10井 沙溪庙组 2.39 0.04 99.96 QL202-H1 沙溪庙组 3.21 0.11 99.89 QL16井 沙溪庙组 2.62 0.06 99.94 QL 213-8-H1 沙溪庙组 3.34 0.12 99.88 JQ822-8-H1 沙溪庙组 2.46 0.04 99.96 JQ516-6-H2 沙溪庙组 2.26 0.02 99.98 JQ12-6-H1 沙溪庙组 2.45 0.04 99.96 表 7 金秋气田取样井氦气检测数据
Table 7. Helium gas detection data from sampling wells in Jinqiu Gas Field
井名 层位 氦气(%) QL10 沙溪庙组 0.053 QL 10 沙溪庙组 0.054 QL 202-H1 沙溪庙组 0.079 QL 202-H1 沙溪庙组 0.080 QL 206-5-H1 沙溪庙组 0.076 QL 206-5-H1 沙溪庙组 0.076 QL 10-H1 沙溪庙组 0.048 QL 10-H1 沙溪庙组 0.049 QL 16 沙溪庙组 0.045 QL 16 沙溪庙组 0.046 QL 213-8-H1 沙溪庙组 0.128 QL 213-8-H1 沙溪庙组 0.130 JQ823-8-H1 沙溪庙组 0.108 JQ 823-8-H1 沙溪庙组 0.108 JQ 822-8-H1 沙溪庙组 0.064 JQ 822-8-H2 沙溪庙组 0.057 JQ 12-6-H1 沙溪庙组 0.063 JQ 516-6-H2 沙溪庙组 0.086 表 8 金秋气田氦源岩U、Th含量
Table 8. Uranium and thorium content of helium source rocks in Jinqiu Gas Field
层位 生氦层岩性 厚度(m) 岩石密度(g/cm3) U含量 Th含量 形成年代(Ma) (10−6) (10−6) 侏罗系沙溪庙组 砂岩(含泥岩) 1300 2.50 5 15 154 侏罗系凉高山组 泥页岩(含砂岩) 100 2.60 7 21 175 侏罗系自流井组 泥页岩(含砂岩) 200 2.60 7 21 190 三叠系须家河组 泥岩、碳质泥岩 300 2.60 7 21 203 砂岩 500 2.70 5 15 203 筇竹寺组 页岩 300 2.60 14 6 65 基底 花岗岩、基性岩、变质岩 1000 2.90 4.10 6.30 65 注:筇竹寺组、基底按喜山运动开始(65 Ma)计算生氦时间。 表 9 金秋气田各层氦源岩生氦量
Table 9. Helium production from various layers of helium source rocks in Jinqiu Gas Field
层位 生氦层岩性 年产氦
(10−4 m3)生氦强度
(104 m3/km2)贡献率
(%)氦气总量
(108 m3)侏罗系沙溪庙组 砂岩(含泥岩) 33.80 52.10 35.5 41.16 侏罗系凉高山组 泥页岩(含砂岩) 3.78 6.62 4.50 5.23 侏罗系自流井组 泥页岩(含砂岩) 7.56 14.36 9.76 11.34 三叠系须家河组 泥岩、碳质泥岩 11.34 23.02 15.67 18.19 砂岩 14.10 28.62 19.46 22.60 筇竹寺组 页岩 14.54 9.45 6.44 7.47 基底 花岗岩、基性岩、
变质岩19.60 12.74 8.66 10.06 统计 104.72 146.91 99.99 116.05 总生烃强度(须家河组+侏罗系
凉高山组、自流井组)21×108 m3/km2 氦丰度 0.0699 % -
[1] doi: 10.11764/j.issn.1672-1926.2021.08.006陈践发, 刘凯旋, 董勍伟, 等 . 天然气中氦资源研究现状及我国氦资源前景[J]. 天然气地球科学,2021 ,32 (10 ):1436 −1449 . doi: 10.11764/j.issn.1672-1926.2021.08.006CHEN Jianfa, LIU Kaixuan, DONG Qingwei, et al . Research status of helium resources in natural gas and prospects of heliumresources in China[J]. Natural Gas Geoscience,2021 ,32 (10 ):1436 −1449 .[2] 陈德荣, 苏远东, 赵恒兵, 等 . 四川盆地可地浸砂岩型铀矿区域成矿条件探讨[J]. 四川地质学报,2013 ,33 (s1 ):47 −52 .CHEN Derong, SU Yuandong, ZHAO Hengbing, et al . Discussion on regional metallogenic conditions of in-situ leachable sandstone type uranium deposits in Sichuan Basin[J]. Acta Geologica Sichuan,2013 ,33 (s1 ):47 −52 .[3] 陈新军, 陈刚, 边瑞康, 等 . 四川盆地涪陵页岩气田氦气资源潜力与成因机理[J]. 天然气地球科学,2023 ,34 (3 ):469 −476 .CHEN Xinjun, CHEN Gang, BIAN Ruikang, et al . The helium resource potential and genesis mechanism in Fuling shale gas field, Sichuan Basin[J]. Natural Gas Geoscience,2023 ,34 (3 ):469 −476 .[4] doi: 10.3969/j.issn.1001-6112.2003.05.010戴金星 . 威远气田成藏期及气源[J]. 石油实验地质,2003 ,25 (5 ):473 −480 . doi: 10.3969/j.issn.1001-6112.2003.05.010DAI Jinxing . P00L-forming periods and gsa sources of Weiyuan gasfield[J]. Petroleum Geology & Experiment,2003 ,25 (5 ):473 −480 .[5] 冯旭亮, 汪啸东, 罗姣, 等 . 鄂尔多斯盆地地热和氦气资源远景: 来自居里面深度的证据[J]. 西北地质,2025 ,58 (3 ):22 −32 .FENG Xuliang, WANG Xiaodong, LUO Jiao, et al . Geothermal and Helium Resource Prospects in the Ordos Basin: Insight from the Curie Point Depths[J]. Northwestern Geology,2025 ,58 (3 ):22 −32 .[6] 高宇, 刘全有, 朱东亚, 等 . 稀有气体示踪地质流体及氦气富集研究进展[J]. 煤田地质与勘探,2025 ,53 (6 ):84 −95 .GAO Yu, LIU Quanyou, ZHU Dongya, et al . Advances in research on noble gas as tracers of geofluids and helium enrichment[J]. Coal Geology & Exploration,2025 ,53 (6 ):84 −95 .[7] 谷志东, 翟秀芬, 江兴福, 等 . 四川盆地威远构造基底花岗岩地球化学特征及其构造环境[J]. 地球科学(中国地质大学学报),2013 ,38 (S1 ):31 −42 .GU Zhidong, ZHAI Xiufen, JIANG Xingfu, et al . Geochemical characteristics and tectonic environment of basal granite in Weiyuan structure, Sichuan Basin[J]. Earth Sciences(Journal of China University of Geosciences),2013 ,38 (S1 ):31 −42 .[8] 管树巍, 姜华, 鲁雪松, 等 . 四川盆地中部走滑断裂系统及其控油气作用[J]. 石油学报,2022 ,43 (11 ):1542 −1557 .GUAN Shuwei, JIANG Hua, LU Xuesong, et al . Strike-slip fault system and its control on oil & gas accumulation in central Sichuan Basin[J]. Acta Petrolei Sinica,2022 ,43 (11 ):1542 −1557 .[9] 李玉宏. 渭河盆地氦气成藏条件及资源前景[M]. 北京: 地质出版社, 2018: 20−25+204−218. [10] 李玉宏, 张国伟, 周俊林, 等 . 氦气资源调查理论与技术研究现状及建议[J]. 西北地质,2022 ,55 (4 ):1 −10 .LI Yuhong, ZHANG Guowei, ZHOU Junlin, et al . Research Status and Suggestions on Helium Resource Investigation Theory and Technolog[J]. Northwestern Geology,2022a ,55 (4 ):1 −10 .[11] 李玉宏, 张文, 周俊林, 等 . 花岗岩在氦气成藏中的双重作用: 氦源与储集[J]. 西北地质,2022 ,55 (4 ):95 −102 .LI Yuhong, ZHANG Wen, ZHOU Junlin, et al . Dual Contribution of Granitesin Helium Accumulation: Sourceand Reservoi[J]. Northwestern Geology,2022b ,55 (4 ):95 −102 .[12] 李云波, 王成涛, 宋党育, 等 . 我国富氦盆地成藏模式对煤系氦气富集和勘探的启示[J]. 煤田地质与勘探,2025 ,53 (6 ):22 −47 .LI Yunbo, WANG Chengtao, SONG Dangyu, et al . Implications of helium accumulation models in helium-rich basins in China for the enrichment and exploration of helium in coal measures[J]. Coal Geology & Exploration,2025 ,53 (6 ):22 −47 .[13] 宋鸿彪, 罗志立 . 四川盆地基底及深部地质结构研究的进展[J]. 地学前缘,1995 ,2 (3−4 ):231 −237 .SONG Hongbiao, LUO Zhili . The study of the basement and deep geological structures of Sichuan Basin, China[J]. Earth Science Frontiers,1995 ,2 (3−4 ):231 −237 .[14] 魏泽坤, 冯旭亮, 马佳月, 等 . 鄂尔多斯盆地东南部重磁场特征及其氦气勘探意义[J]. 西北地质,2023 ,56 (5 ):98 −110 .WEI Zekun, FENG Xuliang, MA Jiayue, et al . Characteristics of Gravity and Magnetic Field and their Significance of Helium Resources Exploration in the Southeastern Ordos Basin[J]. Northwestern Geology,2023 ,56 (5 ):98 −110 .[15] 辛志源, 陈践发, 王杰, 等 . 川东南地区不同构造样式页岩气中氦气差异富集机理[J]. 煤田地质与勘探,2025 ,53 (6 ):70 −83 .XIN Zhiyuan, CHEN Jianfa, WANG Jie, et al . Mechanisms underlying differential helium enrichment in shale gas of varying structural styles in the southeastern Sichuan Basin[J]. Coal Geology & Exploration,2025 ,53 (6 ):70 −83 .[16] 张本健, 潘珂, 吴长江, 等 . 四川盆地金秋气田侏罗系沙溪庙组多期砂组天然气复合成藏机理及模式[J]. 天然气工业,2022 ,42 (1 ):51 −61 .ZHANG Benjian, PAN Ke, WU Changjiang, et al . Compound gas accumulation mechanism and model of Jurassic ShaximiaoFormation multi-stage sandstone formations in Jinqiu Gas Field of the Sichuan Basin[J]. Natural Gas Industry,2022 ,42 (1 ):51 −61 .[17] 张虎权, 卫平生, 张景廉 . 也谈威远气田的气源——与戴金星院士商榷[J]. 天然气工业,2005 ,25 (7 ):4 −7 .ZHANG Huquan, WEI Pingsheng, ZHANG Jinglian . About the opigin of natural gas in Weiyuan Field: to discuss with academician Dai Jingxing[J]. Natural Gas Industry,2005 ,25 (7 ):4 −7 .[18] 张宇轩, 吕鹏瑞, 牛亚卓, 等 . 全球氦气资源成藏背景、地质特征与产能格局初探[J]. 西北地质,2022 ,55 (4 ):11 −32 .ZHANG Yuxuan, LÜ Pengrui, NIU Yazhuo, et al . Preliminary Study on the Geological Characteristics, Resource Potential and Production Capacity Pattern of Global Helium Resource[J]. Northwestern Geology,2022 ,55 (4 ):11 −32 .[19] 张健, 张海华, 贺君玲, 等 . 东北地区氦气成藏条件与资源前景分析[J]. 西北地质,2023 ,56 (1 ):117 −128 .ZHANG Jian, ZHANG Haihua, HE Junling, et al . Analysis of Helium Accumulation Conditions and Resource Prospect in Northeast China[J]. Northwestern Geology,2023 ,56 (1 ):117 −128 .[20] 张子枢 . 四川盆地天然气中的氦[J]. 天然气地球科学,1992 ,3 (4 ):1 −8 .ZHANG Zishu . Helium in natural gas from Sichuan Basin[J]. Natural Gas Geoscience,1992 ,3 (4 ):1 −8 .[21] 张宝收, 张本健, 汪华, 等 . 四川盆地金秋气田: 一个典型以中生界沉积岩为氦源岩的含氦-富氦气田[J]. 石油与天然气地质,2024 ,45 (1 ):185 −199 .ZHANG Baoshou, ZHANG Benjian, WANG Hua, et al . The Jinqiu gas field in the Sichuan Basin: A typical helium-bearing to helium-richgas field with the Mesozoic sedimentary rocks as helium source rocks[J]. Oil & Gas Geology,2024 ,45 (1 ):185 −199 .[22] 赵靖舟. 油气成藏地质学[M]. 北京: 石油地质出版社, 2013: 8−45. [23] 赵安坤, 王东, 时志强, 等 . 四川盆地及周缘地区氦气资源调查研究进展与未来工作方向[J]. 西北地质,2022 ,55 (4 ):74 −84 .ZHAO Ankun, WANG Dong, SHI Zhiqiang, et al . Exploration Status and Helium Resource Potential of the Helium-bearing Natural Gas Field in Sichuan Basin and Its Surrounding Areas[J]. Northwestern Geology,2022 ,55 (4 ):74 −84 .[24] 邹易, 罗情勇, 陈践发, 等 . 含氦−富氦气藏氦气竞争溶解物理模拟实验研究[J]. 煤田地质与勘探,2025 ,53 (6 ):96 −108 .ZOU Yi, LUO Qingyong, CHEN Jianfa, et al . Physical simulation experiments on competitive dissolution of helium in helium-containing to helium-rich gas reservoirs[J]. Coal Geology & Exploration,2025 ,53 (6 ):96 −108 .[25] Brown A A. Formation of High Helium Gases:A Guide for Explorationists[C]. AAPG Convention, New Orleans, Louisiana, USA, 2010. -