Typomorphic Characteristics and Metallogenic Indicative Significance of Pyrite in Beiling Gold Deposit, East Qinling
-
摘要:
北岭金矿床地处东秦岭熊耳山多金属矿集区,作为典型的受构造控制的蚀变岩型金矿床,其深部成矿潜力亟待深入探究。本研究聚焦于北岭金矿床 530 m 与 620 m 标高矿体中的载金矿物黄铁矿,借助野外地质调查、矿相学分析,以及对载金矿物黄铁矿的产出特征、成分标型特征和热电性特征的系统研究,深入探讨不同标高黄铁矿的成矿温度、形成深度及剥蚀率,获得如下成果与认识:①针对 530 m 与 620 m 两段标高的黄铁矿样本开展分析, Fe/(As + S)值未呈现显著差异,这一结果表明两段标高处的黄铁矿均处于矿体中深部位置,Au/Ag值显示该矿体为岩浆热液成因。②经测定,530 m 标高的黄铁矿平均形成温度为 202~291 ℃,620 m 标高的黄铁矿平均形成温度则为 219~275 ℃,两段标高的黄铁矿形成温度基本相近,指示其形成于中温环境。③ 530 m 标高的矿体剥蚀率为 53.0%~54.0%,620 m 标高的矿体剥蚀率为 53.5% ~56.8%,整体呈现出较低的剥蚀率。研究结果表明,北岭金矿床两段标高的黄铁矿样品均处于矿体中深部位置,这代表着矿体向深部存在延展空间,具备较大的深部勘查潜力。
Abstract:Beiling gold deposit is located in the Xiong'ershan polymetallic ore cluster in Eastern Qinling, as a typical tectonically controlled alteration rock gold deposit, its deep metallogenic potential needs to be explored urgently. This study focused on the gold-bearing mineral pyrite in the 530 m and 620 m elevation orebodies of the F881 ore body at the Beiling Gold Deposit. With the help of field geological investigation, mineralogical analysis, and systematic study of the production characteristics, composition standard characteristics and thermoelectric characteristics of gold-bearing mineral pyrite, the metallogenic temperature, formation depth and denudation rate of pyrite at different elevations are deeply discussed, and the following results and understandings are obtained: ① Analysis of pyrite samples at 530 m and 620 m elevations shows no significant difference in ω(Fe)/ω(As+S) values, which indicates that the pyrite at the elevations of the two elevations is in the middle and deep positions of the ore body. At the same time, the ω(Au)/ω(Ag) ratio indicates that the ore body is of magmatic hydrothermal origin. ② The average formation temperature of pyrite at 530 m elevation is 202~291 ℃, and the average formation temperature of pyrite at 620 m elevation is 219~275 ℃, The formation temperature of pyrite in the two elevations is basically the same, indicating that it was formed in a mesothermal environment.③In terms of ore body denudation rates over two elevations, the ones at the 530 m elevation is from 53.0% to 54.0% and the ones at the 620 m elevation is from 53.5% to 56.8%, showing a lower denudation rate overall. Based on the above research results, the pyrite samples of the two elevations of the Beiling gold deposit are in the middle and deep positions of the ore body, which indicates that there is room for extension of the ore body to the deep part and has great potential for deep exploration.
-
Key words:
- Qinling orogenic belt /
- Beiling gold deposit /
- pyrite /
- typomorphic characteristics
-
-
图 1 秦岭造山带地质简图(a)和熊耳山矿集区地质简图(b)(据曾涛等,2022修改)
Figure 1.
图 2 北岭金矿区地质特征(据李肖龙,2019修改)
Figure 2.
图 3 北岭金矿F881矿体地质剖面(修改自李肖龙,2020)
Figure 3.
表 1 北岭金矿F881号矿体不同标高黄铁矿电子探针(EMPA)分析结果(%)
Table 1. EMPA results of pyrite in different elevations of Beiling gold deposit F881 ore body (%)
样品编号 类型 标高(m) 测点个数 检测值 Mn S Fe Pb Co Bi Ni Ag Cu Au Zn As 530-2 Py1 10 最高 0.02 53.58 46.05 1.94 0.13 0.35 0.04 0.27 0.09 0.18 0.04 1.33 最低 − 51.30 44.70 0.09 0.05 0.03 − − − − − − 平均 0.01 52.27 45.42 0.51 0.08 0.12 0.02 0.05 0.01 0.05 0.01 0.33 Py2 10 最高 0.04 52.45 45.66 0.52 0.14 0.31 0.07 0.11 0.26 0.26 0.05 3.43 最低 − 50.08 44.46 0.22 0.07 0.03 − − − − − − 平均 0.01 51.47 45.11 0.34 0.09 0.18 0.02 0.02 0.04 0.06 0.02 1.41 530-4 Py1 530 5 最高 0.01 53.43 45.41 0.49 0.12 0.21 0.04 0.10 0.20 0.16 0.03 5.55 最低 − 48.65 43.74 0.18 0.10 0.04 − − 0.01 − − − 平均 − 51.73 44.47 0.36 0.11 0.14 0.02 0.04 0.08 0.10 0.01 1.87 Py2 15 最高 0.03 54.12 45.81 0.67 0.16 0.41 0.05 0.18 0.06 0.20 0.07 3.41 最低 − 49.54 44.24 0.17 0.05 0.02 − − − − − − 平均 0.01 51.75 45.06 0.35 0.09 0.15 0.01 0.04 0.02 0.07 0.02 1.06 530-5 Py1 5 最高 0.02 54.66 45.39 0.61 0.12 0.19 0.04 0.05 0.04 0.10 0.04 3.59 最低 − 48.61 43.53 0.30 0.06 0.05 − − − − − − 平均 0.01 51.81 44.69 0.46 0.08 0.14 0.02 0.02 0.01 0.06 0.01 1.60 Py2 15 最高 0.05 54.39 46.07 0.54 0.13 0.37 0.06 0.09 0.05 0.30 0.03 3.37 最低 − 50.07 44.47 0.14 0.07 0.00 − − − − − − 平均 0.01 52.38 45.41 0.33 0.09 0.17 0.02 0.02 0.01 0.10 0.01 0.66 620-1 Py1 10 最高 0.04 53.12 45.78 0.49 0.12 0.35 0.03 0.05 0.05 0.16 0.05 4.63 最低 − 49.19 44.50 0.17 0.07 0.05 − − − − − − 平均 0.01 51.87 45.24 0.36 0.09 0.19 0.01 0.02 0.02 0.06 0.02 1.14 Py2 10 最高 0.03 53.52 45.74 0.52 0.14 0.34 0.06 0.12 0.08 0.16 0.04 5.69 最低 − 48.07 44.05 0.20 0.06 0.03 − − − − − − 平均 0.01 51.53 45.06 0.36 0.10 0.16 0.01 0.02 0.01 0.03 0.01 1.69 表 2 北岭金矿F881矿体黄铁矿的热电系数与导型特征
Table 2. Thermoelectric coefficient and conductivity characteristics of pyrite in Beiling gold Deposit F881 ore body
样号 标高(m) N型热电系数范围(μV/℃) 出现频率(%) P型热电系数(μV/℃) 出现频率(%) BL530-2 530 −166.1~−16.5 46.0 3.7~357.9 54.0 BL530-5(60目) −136.4~−7.1 25.0 1.8~237.7 75.0 BL530-5(80目) −85.4~−3.5 26.5 15.4~268.7 73.5 BL620-1 620 −314.3~−1.9 48.0 12.7~194.9 52.0 BL620-2 −132.4~−9 32.0 3.7~219.3 68.0 表 3 北岭金矿F881矿体黄铁矿Fe/(S+As)值与其形成深度的关系(据周学武等,2005修改)
Table 3. Relationship between the value of Fe/(S+As) of pyrite and its output elevation of Beiling gold deposit F881 ore body
产地 产出部位/标高 平均Fe含量(%) 平均As含量(%) 平均S含量(%) Fe/(S+As) 前苏联 深 45.62 1.55 52.35 0.85 中 45.72 1.28 51.68 0.86 浅 46.34 0.25 49.78 0.93 北岭 530 45.15 1.07 51.95 0.85 620 45.15 1.41 51.70 0.85 表 4 北岭金矿床黄铁矿的形成温度
Table 4. Formation temperature of pyrite in Beiling gold Deposit
样号 标高(m) N型黄铁矿形成温度(℃) P型黄铁矿形成温度(℃) 范围 平均值 范围 平均值 BL530-2 530 397~479 440 76~288 164 BL530-5(60目) 391~462 420 74~216 130 BL530-5(80目) 389~434 411 83~235 129 BL620-1 620 389~560 432 81~190 130 BL620-2 392~460 418 76~205 123 表 5 北岭金矿床黄铁矿热电性参数(Xnp)及矿体剥蚀率取值(γ)
Table 5. Thermoelectricity parameters and ore erosion rate of Beiling gold deposit
样号 fI fII fIV fv Xnp 矿体剥蚀率 BL530-2 0 7 23 0 −16 54.00 BL530-5(60目) 0 2 14 0 −12 53.00 BL530-5(80目) 0 2 14 0 −12 53.00 BL620-1 0 0 21 3 −27 56.75 BL620-2(60目) 0 2 16 0 −14 53.50 -
[1] 抄尉尉. 豫西潭头地区两期金形成作用研究[D]. 北京: 中国地质大学(北京), 2019. CHAO Weiwei. Study on the formation of gold in two phases in Tantou area of western Henan[D]. Beijing: China University of Geosciences (Beijing), 2019. [2] 陈雷, 王文娟, 张云政, 等. 栾川县北岭金矿床地质特征及深部找矿远景分析[A]. 河南省地质学会2011年学术年会论文集[C], 2011: 45−48. [3] 陈龙龙, 唐利, 沈彦谋, 等 . 秦岭造山带栾川Mo-W矿集区和柞水-山阳Cu-Mo矿集区斑岩型矿床成矿差异性对比[J]. 西北地质,2024 ,57 (2 ):67 −89 .CHEN Longlong, TANG Li, SHEN Yanmou, et al . Comparison on Metallogenic Differences of Porphyry Deposits between Luanchuan Mo-W and Zhashui-Shanyang Cu-Mo Ore-clusters in Qinling Orogenic Belt: Constraints of Magmatic Source and Metallogenic Conditions[J]. Northwestern Geology,2024 ,57 (2 ):67 −89 .[4] 初文华 . 某些矿物的导电类型与找矿[J]. 地质与勘探,1989 , (4 ):69 .CHU Wenhua . The conductive type of certain minerals is related to prospecting[J]. Geology and Exploration,1989 , (4 ):69 .[5] 寸小妮, 张洪深 . 黄铁矿热电性在深部找矿中的应用[J]. 化工矿产地质,2020 ,42 (3 ):250 −256 .CUN Xiaoni, ZHANG Hongshen . Application of pyrite thermoelectricity in deep prospecting[J]. Geology of Chemical Minerals,2020 ,42 (3 ):250 −256 .[6] 董娟, 李成禄 . 大兴安岭永新金矿床黄铁矿热电性特征及其指示意义[J]. 吉林大学学报(地球科学版),2021 ,51 (1 ):95 −106 .DONG Juan, LI Chenglu . Thermolectric characteristics of pyrite form Yongxin gold deposit, Xing’an great range and its indicative signficance[J]. Journal of Jinlin University (Earth Science Edition),2021 ,51 (1 ):95 −106 .[7] doi: 10.12401/j.nwg.2024045段湘益, 李维成, 王海元, 等 . 东秦岭黄龙铺矿田碳酸岩脉型铼钼矿床成矿特征及找矿预测[J]. 西北地质,2024 ,57 (5 ):53 −73 . doi: 10.12401/j.nwg.2024045DUAN Xiangyi, LI Weicheng, WANG Haiyuan, et al . Metallogenic Characteristics and Prospecting Prediction of Carbonatite Vein-Type Re-Mo Deposits in Huanglongpu Ore Field, East Qinling[J]. Northwestern Geology,2024 ,57 (5 ):53 −73 .[8] 付鑫宁, 唐利, 姚梅青, 等 . 东秦岭黄水庵钼矿床的碳酸岩成因与地质意义: 来自痕量元素和Sr-Nd-Pb同位素的约束[J]. 成都理工大学学报(自然科学版),2021 ,48 (5 ):525 −538 .FU Xinning, TANG Li, YAO Meiqing, et al . Genesis and geological significance of the carbonatite in the Huangshui an Mo deposit in Eastern Qinling area of China: Constraints from trace elements and Sr-Nd-Pb isotopes[J]. Journal of Chengdu University of Technology(Science & Technology Edition),2021 ,48 (5 ):525 −538 .[9] 高永伟, 王志华, 黎卫亮, 等 . 热液型金矿床中的黄铁矿矿物学研究综述[J]. 西北地质,2019 ,52 (3 ):58 −69 .GAO Yongwei, WANG Zhihua, LI Weiliang, et al . A Review of Pyrite Mineralogy Research in Hydrothermal Gold Deposits[J]. Northwestern Geology,2019 ,52 (3 ):58 −69 .[10] doi: 10.12401/j.nwg.2023179焦阳, 冯俊环 . 西秦岭地区猪婆沟金矿成矿物质来源及矿床成因分析[J]. 西北地质,2024 ,57 (1 ):219 −229 . doi: 10.12401/j.nwg.2023179JIAO Yang, FENG Junhuan . Source of ore Forming Materials and Genesis of Zhupogou Gold Deposit in West Qinling Mountains[J]. Northwestern Geology,2024 ,57 (1 ):219 −229 .[11] 李肖龙, 申硕果, 黄丹峰, 等 . 豫西熊耳山北岭金矿区马家河组安山岩地球化学特征及其地质意义[J]. 岩石矿物学杂志,2019 ,38 (3 ):287 −302 .LI Xiaolong, SHEN Shuoguo, HUANG Danfeng, et al . Geochemical characteristics of andesites from the Majiahe Formation in the Beiling gold deposit and their geological significance[J]. Acta Petrologica et Mineralogica,2019 ,38 (3 ):287 −302 .[12] 李肖龙, 申硕果, 黄丹峰, 等 . 豫西熊耳山地区北岭金矿Pb、S同位素特征及其地质意义[J]. 地质与勘探,2020 ,56 (2 ):253 −264 .LI Xiaolong, SHEN Shuoguo, HUANG Danfeng, et al . Geochemical characteristics of sulfur and lead isotope composition in the Beiling gold deposit, Xiong'ershan area, western Henan Province and their geological significance[J]. Geology and Exploration,2020 ,56 (2 ):253 −264 .[13] 孟栋材. 河南熊耳山地区构造变形及演化历史分析[D]. 合肥: 合肥工业大学, 2020. MENG Dongcai. Analysis of Structural Deformation and Evolution History in Xiong′ershan Area, Henan Province[D]. Hefei: Hefei University of Technology, 2020. [14] doi: 10.12401/j.nwg.2023178孟五一, 张振, 高永宝, 等 . 南秦岭新发现王庄金矿床矿物成分及其地质意义[J]. 西北地质,2024 ,57 (4 ):157 −169 . doi: 10.12401/j.nwg.2023178MENG Wuyi, ZHANG Zhen, GAO Yongbao, et al . Material Composition and Geological Significance of the Newly Discovered Wangzhuang Gold Deposit in South Qinling[J]. Northwestern Geology,2024 ,57 (4 ):157 −169 .[15] doi: 10.12401/j.nwg.2023057刘诚, 李含, 郑艳荣, 等 . 综合物探方法在秦岭高植被覆盖深切割区矿产预测中的应用[J]. 西北地质,2025 ,58 (3 ):108 −119 . doi: 10.12401/j.nwg.2023057LIU Cheng, LI Han, ZHENG Yanrong, et al . Application of Comprehensive Geophysical Prospecting Method in the Prediction of Mineral Resources in Qinling with High Vegetation Coverage and Deep Cut Area[J]. Northwestern Geology,2025 ,58 (3 ):108 −119 .[16] 孟宪锋 . 河南省栾川县北岭金矿区地球化学特征[J]. 黄金,2011 ,32 (6 ):9 −12 .MENG Xianfeng . Geochemical characteristics of Beiling gold deposit, Henan Luanchuan[J]. Gold,2011 ,32 (6 ):9 −12 .[17] 宋焕斌 . 黄铁矿标型特征在金矿地质中的应用[J]. 地质与勘探,1989 ,25 (7 ):31 −37 .SONG Huanbin . Applications of Typomorphic Characteristies of Pyrite in Gold Geology[J]. Geology and Exploration,1989 ,25 (7 ):31 −37 .[18] 王汉辉, 唐利, 杨勃畅, 等 . 东秦岭黄水庵碳酸岩型Mo-REE矿床方解石地球化学特征和氟碳铈矿U-Th-Pb 年龄及其意义[J]. 西北地质,2023 ,56 (1 ):48 −62 .WANG Hanhui, TANG Li, YNAG Bochang, et al . Geochemical Characteristics of Calcite and Bastnäsite U-Th-Pb Age of the Huangshui’an Carbonatite-hosted Mo-REE Deposit, Eastern Qinling[J]. Northwestern Geology,2023 ,56 (1 ):48 −62 .[19] 王立峰, 薛志强, 王振强, 等. 小秦岭金矿田杨砦峪–樊岔矿段黄铁矿LA-ICP-MS微量元素特征及其指示意义[J]. 西北地质, 2024, 57(5): 74−87. WANG Lifeng, XUE Zhiqiang, WANG Zhenqiang, et al. LA-ICP-MS In-situ Trace Element Characteristic of Pyrite from Yangzaiyu-Fancha Ore Block in Xiaoqinling Gold Field and Its Indication[J]. Northwestern Geology, 2024, 57(5): 74−87. [20] 吴晋超, 申俊峰, 申玉科, 等 . 胶东黑岚沟金矿田黄铁矿热电性研究及深部成矿预测[J]. 西北地质,2021 ,54 (2 ):111 −125 .WU Jinchao, SHEN Junfeng, SHEN Yuke, et al . The Rmoelectricity Property and Deep Metallogenic Forecast of Pyrite in Heilangou Gold Field of Jiaodong, Shandong Province[J]. Northwestern Geology,2021 ,54 (2 ):111 −125 .[21] 郇伟静, 袁万明, 李娜 . 川西甘孜—理塘金矿带形成条件的矿物电子探针与裂变径迹研究[J]. 现代地质,2010 ,25 (2 ):261 −270 .XUN Weijing, YUAN Wanming, LI Na . Study on the Mineral Electron Microprobe Evidence of the Formation Conditions and Fission Track of Gold Deposits in Ganzi-Litang Gold Belt, Western Sichuan Province[J]. Geoscience,2010 ,25 (2 ):261 −270 .[22] 要梅娟, 申俊峰, 李胜荣 . 河南嵩县前河金矿黄铁矿的热电性、热爆特征及其与金矿化的关系[J]. 地质通报,2008 ,27 (5 ):649 −656 .YAO Meijuan, SHEN Junfeng, LI Shengrong . Thermoeleclric and thermal decrepitation characteristics of pyrite in the Qianhe gold deposit, Songxian County, Henan, China, and their relationships with gold mineralization[J]. Geological Bulletin Of China,2008 ,27 (5 ):649 −656 .[23] 曾涛, 唐利, 孙宇辰, 等 . 东秦岭祁雨沟金矿床189号矿体黄铁矿标型特征及其地质意义[J]. 金属矿山,2022 , (1 ):185 −194 .ZENG Tao, TANG Li, SUN Yuchen, et al . Typomorphic Characteristics and Geological Significance of Pyrite in No. 189 Orebody of Qiyugou Gold Deposit, East Qinling[J]. Metal Mine,2022 , (1 ):185 −194 .[24] 张文媛, 王翠芝 . 紫金山铜金矿黄铁矿热电性特征及其地质意义[J]. 地质学报,2014 ,88 (7 ):1288 −1298 .ZHANG Wenyuan, WANG Cuizhi . Thermoelectric Characteristics of Pyrite in the Zijinshan Copper-Gold Deposit and Its Geological Significance[J]. Acta Geologica Sinica,2014 ,88 (7 ):1288 −1298 .[25] 赵江林, 唐利, 田浩浩, 等 . 南秦岭双元沟矿床斑岩的黑云母和角闪石成分特征及成矿意义[J]. 成都理工大学学报(自然科学版),2024 ,51 (5 ):867 −879 .ZHAO Jianglin, TANG Li, TIAN Haohao, et al . The compositions and implications of biotite and amphibole from porphyry in Shuangyuangou deposit, South Qinling[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2024 ,51 (5 ):867 −879 .[26] 赵嘉农, 任富根, 李增慧, 等 . 北岭金矿中的针碲银金矿的研究[J]. 岩石矿物学杂志,1997 ,16 (1 ):76 −81 .ZHAO Jianong, REN Fugen, LI Zenghui, et al . A Study of Sylvanite from the Beiling Gold Deposit, Henan Province[J]. Acta Petrologica et Mineralogica,1997 ,16 (1 ):76 −81 .[27] 周学武, 李胜荣, 鲁力, 等 . 辽宁丹东五龙矿区石英脉型金矿床的黄铁矿标型特征研究[J]. 现代地质,2005 ,19 (2 ):231 −238 .ZHOU Xuewu, LI Shengrong, LU Li, et al . Study of pyrite typomorphic characteristics of wulong quartz-vein-type gold deposit in Dandong, Liaoning province, China[J]. Geoscience,2005 ,19 (2 ):231 −238 .[28] doi: 10.1016/j.gr.2015.06.009Dong Yunpeng, Santosh M . Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research,2016 ,29 (1 ):1 −40 .[29] Tang Li, Wang Rui, Santosh M, et al. Key factors controlling the late Mesozoic diverse porphyry Mo, Cu, and Au mineralization in the Qinling Orogenic Belt, Central China[J]. Bulletin of the Geological Society of Amer-ica, 2025: 1−17. doi: https://doi.org/10.1130/B37779.1. [30] doi: 10.1130/B36170.1Tang Li, Wagner Thomas, Fusswinkel Tobias, et al . Fluid inclusion evidence for the magmatic-hydrothermal evolution of closely linked porphyry Au, porphyry Mo, and barren systems, East Qinling, China[J]. Bulletin of the Geological Society of America,2022 ,134 :1529 −1548 .[31] Hu Xinkai, Tang Li, Zhang Shouting, et al . Formation of the Qiyugou porphyry gold system in East Qinling, China: insights from timing and source characteristics of Late Mesozoic magmatism[J]. Journal of the Geological Society,2022 ,179 (4 ):jgs2020 −253 .[32] doi: 10.1016/j.gr.2020.08.013Tang Li, Zhao Yu, Zhang Shouting, et al . Origin and evolution of a porphyry-breccia system: Evidence from zircon U-Pb, molybdenite Re-Os geochronology, in situ sulfur isotope and trace elements of the Qiyugou deposit, China[J]. Gondwana Research,2021 ,89 :88 −104 .[33] doi: 10.1007/s00710-009-0062-5Xu Xisheng, Griffin William L, Ma Xi, et al . The Taihua group on the southern margin of the North China craton: further insights from U–Pb ages and Hf isotope compositions of zircons[J]. Mineralogy and Petrology,2009 ,97 (1−2 ):43 −59 .[34] doi: 10.1016/j.gsf.2018.10.007Wang Changming, He Xinyu, Emmanuel John M, et al . CarranzaPaleoproterozoic volcanic rocks in the southern margin of the North China Craton, central China: Implications for the Columbia supercontinent[J]. Geoscience Frontiers,2019 ,10 (4 ):1543 −1560 . -