蛭石@淀粉碳化物复合材料的制备及优化

杜慧聪, 韦开放, 黄晶晶, 刘云鹤, 王伟, 蓝平, 蓝丽红. 蛭石@淀粉碳化物复合材料的制备及优化[J]. 矿产综合利用, 2025, 46(3): 10-17. doi: 10.12476/kczhly.202208260543
引用本文: 杜慧聪, 韦开放, 黄晶晶, 刘云鹤, 王伟, 蓝平, 蓝丽红. 蛭石@淀粉碳化物复合材料的制备及优化[J]. 矿产综合利用, 2025, 46(3): 10-17. doi: 10.12476/kczhly.202208260543
DU Huicong, WEI Kaifang, HUANG Jingjing, LIU Yunhe, WANG Wei, LAN Ping, LAN Lihong. Preparation and Optimization of Vermiculite @ Starch Carbide Composites[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(3): 10-17. doi: 10.12476/kczhly.202208260543
Citation: DU Huicong, WEI Kaifang, HUANG Jingjing, LIU Yunhe, WANG Wei, LAN Ping, LAN Lihong. Preparation and Optimization of Vermiculite @ Starch Carbide Composites[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(3): 10-17. doi: 10.12476/kczhly.202208260543

蛭石@淀粉碳化物复合材料的制备及优化

  • 基金项目: 国家自然科学基金项目(51464006);国家级大学生创新训练项目(202010608011)
详细信息
    作者简介: 杜慧聪(1997-),女,硕士,蛭石复合材料的制备及应用
    通讯作者: 蓝丽红(1972-),女,教授,矿物复合材料制备及应用。
  • 中图分类号: TD985

Preparation and Optimization of Vermiculite @ Starch Carbide Composites

More Information
  • 以蛭石为基底,以淀粉为碳化源,通过水热碳化法制备了蛭石@淀粉碳化物复合材料,并用扫描电镜(SEM)、红外光谱(FTIR)以及比表面积(BET)对复合材料进行了表征。再以苯酚为吸附剂采用响应面法优化复合材料的制备工艺参数。实验结果表明,蛭石@碳化淀粉复合材料的较佳制备工艺参数为,淀粉与蛭石的质量比 3∶1、碳化时间15 h、碳化温度 200 ℃;较佳吸附量 16.52 mg/g,苯酚的去除率99.13%。复合材料的比表面积比原蛭石稍有下降,变化不大,电镜和红外光谱图表明淀粉碳化物成功的负载在蛭石的表面。

  • 加载中
  • 图 1  三种材料的SEM

    Figure 1. 

    图 2  三种材料的FTIR

    Figure 2. 

    图 3  投加质量比对吸附量的影响

    Figure 3. 

    图 4  碳化时间对吸附量的影响

    Figure 4. 

    图 5  碳化温度对吸附量的影响

    Figure 5. 

    图 6  吸附量实测值与预测值对比

    Figure 6. 

    图 7  (AB)质量比和碳化时间的恒值线图与3D曲面

    Figure 7. 

    图 8  (AC)质量比和碳化温度的恒值线图与3D曲面

    Figure 8. 

    图 9  (BC)碳化时间和碳化温度的恒值线图与3D曲面

    Figure 9. 

    图 10  投加量对吸附率的影响

    Figure 10. 

    表 1  实验方案

    Table 1.  Test scheme

    因子 水平
    -1 0 1
    A 2.5∶1 3.0∶1 3.5∶1
    B/h 12 16 20
    C/℃ 190 200 210
    下载: 导出CSV

    表 2  实验设计和对应响应值

    Table 2.  Test design and corresponding response values

    序号AB/hC/℃吸附能力/(mg/g)
    100016.473 4
    210115.183 3
    30-1-115.356 2
    400016.280 8
    51-1015.701 9
    610-115.280 6
    700016.058 5
    8-10115.480 4
    911013.561 5
    10-1-1014.685 7
    1101-115.701 9
    1200016.585 5
    13-11015.102 3
    14-10-115.388 6
    1500016.145 9
    1601112.620 9
    170-1114.875 4
    下载: 导出CSV

    表 3  实验方差结果

    Table 3.  Test results of variance

    方差来源 方差和 df 均方差 F值 P值
    Model 14.67 9 1.63 6.41 0.011 4 显著
    A 0.108 1 0.108 0.4247 0.535 4
    B 1.65 1 1.65 6.48 0.038 3 *
    C 1.59 1 1.59 6.25 0.041 *
    AB 1.63 1 1.63 6.43 0.039 *
    AC 0.008 9 1 0.008 9 0.035 1 0.856 6
    BC 1.69 1 1.69 6.64 0.036 6 *
    A2 0.762 9 1 0.762 9 3 0.126 9
    B2 5.28 1 5.28 20.77 0.002 6 **
    C2 1.27 1 1.27 5.01 0.060 3
    余量 1.78 7 0.254 4
    失拟误差 1.59 3 0.529 10.93 0.051 4 不显著
    纯误差 0.193 6 4 0.048 4
    Cor 总计 16.45 16
    注:表中*代表较大影响(P-value<0.05);**代表极大影响(P-value<0.01)。
    下载: 导出CSV

    表 4  实验验证结果

    Table 4.  Test verification results

    序列 吸附量/
    (mg/g)
    吸附率/% 平均吸附量/
    (mg/g)
    平均吸附率/%
    1 16.533 99.20
    2 16.528 99.17 16.521 99.13
    3 16.503 99.02
    下载: 导出CSV
  • [1]

    Deka J , Saha K , Yadav A , et al. Clay-based nanofluidic membrane derived from vermiculite nanoflakes for pressure-responsive power generation[J]. ACS Applied Nano Materials, 2021, 4(5):4872-4880.

    [2]

    WAN Y , TIAN J , QIAN G , et al. Ultralow specific surface area vermiculite supporting Mn-Ce-Fe mixed oxides as "curling catalysts" for selective catalytic reduction of NO with NH3[J]. Green Chemical Engineering, 2021, 2(3):284-293.

    [3]

    刘猛, 封金鹏, 符林总, 等. 蛭石功能化应用研究新进展[J]. 矿产综合利用, 2021(1):14-22.LIU M , FENG J P , FU L Z , et al. New progress in research on functionalization of vermiculite[J]. Multipurpose Utilization of Mineral Resources, 2021(1):14-22.

    LIU M , FENG J P , FU L Z , et al. New progress in research on functionalization of vermiculite[J]. Multipurpose Utilization of Mineral Resources, 2021(1):14-22.

    [4]

    郑天亮, 宇波. 蛭石改性提高蛭石膨胀度的研究[J]. 矿产综合利用, 2004(2):3-6.ZHENG T L , YU B. Study on improvement of expansion degree of vermiculite by modification of vermiculite[J]. Multipurpose Utilization of Mineral Resources, 2004(2):3-6.

    ZHENG T L , YU B. Study on improvement of expansion degree of vermiculite by modification of vermiculite[J]. Multipurpose Utilization of Mineral Resources, 2004(2):3-6.

    [5]

    刘子祯, 余世锋. 马铃薯淀粉、红薯淀粉、木薯淀粉吸水特性的研究[J]. 粮食与油脂, 2021, 34(3):12-16.LIU Z Z , YU S F. Study on water absorption characteristics of potato starch, sweet potato starch and cassava starch[J]. Food and Oils, 2021, 34(3):12-16.

    LIU Z Z , YU S F. Study on water absorption characteristics of potato starch, sweet potato starch and cassava starch[J]. Food and Oils, 2021, 34(3):12-16.

    [6]

    李赛赛, 曹迎楠, 王军凯, 等. 水热碳化法制备碳纳米材料[J]. 材料导报, 2016, 30(9):17-23+35.LI S S , CAO Y N , WANG J K , et al. Preparation of carbon nanomaterials by hydrothermal carbonization[J]. Materials Review, 2016, 30(9):17-23+35.

    LI S S , CAO Y N , WANG J K , et al. Preparation of carbon nanomaterials by hydrothermal carbonization[J]. Materials Review, 2016, 30(9):17-23+35.

    [7]

    李赛赛, 王军凯, 段红娟, 等. 水热碳化制备碳微球及其在Al2O3-SiC-C浇注料中的应用[J]. 硅酸盐学报, 2018, 46(3):341-346.LI S S , WANG J K , DUAN H J , et al. Preparation of carbon microspheres by hydrothermal carbonization and its application in Al2O3-SiC-C castable[J]. Journal of the Chinese Ceramic Society, 2018, 46(3):341-346.

    LI S S , WANG J K , DUAN H J , et al. Preparation of carbon microspheres by hydrothermal carbonization and its application in Al2O3-SiC-C castable[J]. Journal of the Chinese Ceramic Society, 2018, 46(3):341-346.

    [8]

    ZHOU F , LI K , HANG F , et al. Efficient removal of methylene blue by activated hydrochar prepared by hydrothermal carbonization and NaOH activation of sugarcane bagasse and phosphoric acid[J]. RSC Adv., 2022, 12(3):1885-1896.

    [9]

    Judith G A , ME Sánchez, Jorge C J , et al. Hydrothermal carbonization of biomass and waste: A review[J]. Environmental chemistry letters, 2022(1):20.

    [10]

    Tjma B , Sjb C , Cmm D. Computational fluid dynamics modelling of phenol oxidation in a trickle-bed reactor using 3D eulerian model[J]. Computer Aided Chemical Engineering, 2021, 50:825-831.

    [11]

    LIU A , CHI D , CHEN S. Palladium-catalyzed cascade allylative dicarbofunctionalization of aryl phenol-tethered alkynes with allyl iodides: synthesis of skipped dienes[J]. Organic Letters, 2021, 23(21):8333-8337.

    [12]

    SHI Y, WANG H, SONG G, et al. Magnetic graphene oxide for methylene blue removal: adsorption performance and comparison of regeneration methods[J]. Environmental Science and Pollution Research, 2022, 29(20):30774-30789. doi: 10.1007/s11356-021-17654-5

    [13]

    HAN Y, WANG J, SONG L, et al. A fundamental role of the molecular length in forming metal–organic hybrids of phenol derivatives on silver surfaces[J]. Journal of Physical Chemistry Letters, 2021, 12(7):1869-1875. doi: 10.1021/acs.jpclett.1c00005

    [14]

    韦锋, 王琳, 杨海菊, 等. 4-氨基安替比林法测定水中挥发酚的注意事项[J]. 化学工程师, 2019(5):91-92,69.WEI F, WANG L, YANG H J , et al. Considerations for the determination of volatile phenol in water by 4-amino-antipyrine method[J]. Chemical Engineer, 2019(5):91-92,69.

    WEI F, WANG L, YANG H J , et al. Considerations for the determination of volatile phenol in water by 4-amino-antipyrine method[J]. Chemical Engineer, 2019(5):91-92,69.

    [15]

    Vinson J A, Su X, Zubik L, et al. Phenol antioxidant quantity and quality in foods: Fruits.[J]. J Agric Food Chem, 2001, 49(11):5315-5321. doi: 10.1021/jf0009293

    [16]

    方楠, 吴健, 何强, 等. 响应面法优化铁尾矿砂对铜(Ⅱ)的吸附条件[J]. 矿产综合利用, 2020(1):140-145.FANG N, WU J, HE Q, et al. Optimization of adsorption conditions of copper (Ⅱ) from iron tailings by response surface method[J]. Multipurpose Utilization of Mineral Resources, 2020(1):140-145. doi: 10.3969/j.issn.1000-6532.2020.01.029

    FANG N, WU J, HE Q, et al. Optimization of adsorption conditions of copper (Ⅱ) from iron tailings by response surface method[J]. Multipurpose Utilization of Mineral Resources, 2020(1):140-145. doi: 10.3969/j.issn.1000-6532.2020.01.029

    [17]

    王焕龙, 焦芬, 刘维, 等. 响应曲面法优化铅转炉灰的砷浸出过程[J]. 矿产综合利用, 2022(3):181-187.WANG H L , JIAO F, LIU W, et al. Optimization of arsenic leaching process of lead converter ash by response surface method[J]. Multipurpose Utilization of Mineral Resources, 2022(3):181-187.

    WANG H L , JIAO F, LIU W, et al. Optimization of arsenic leaching process of lead converter ash by response surface method[J]. Multipurpose Utilization of Mineral Resources, 2022(3):181-187.

    [18]

    郑锡瀚, 马忻狄, 潘怡莹, 等. 水热碳化法制备淀粉碳化物/海泡石(St-Sep)复合材料的优化[J]. 矿产综合利用, 2021(5):11-19.ZHENG X H , MA X D, PAN Y Y , et al. Preparation of starch carbide/sepiolite (St-Sep) composites by hydrothermal carbonization[J]. Multipurpose Utilization of Mineral Resources, 2021(5):11-19.

    ZHENG X H , MA X D, PAN Y Y , et al. Preparation of starch carbide/sepiolite (St-Sep) composites by hydrothermal carbonization[J]. Multipurpose Utilization of Mineral Resources, 2021(5):11-19.

    [19]

    Ockuly R A , Weese M L , Smucker B J , et al. Response surface experiments: a meta-analysis[J]. Chemometrics & Intelligent Laboratory Systems, 2017, 164:64-75.

  • 加载中

(10)

(4)

计量
  • 文章访问数:  42
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2022-08-26
刊出日期:  2025-06-25

目录