-
摘要:
以蛭石为基底,以淀粉为碳化源,通过水热碳化法制备了蛭石@淀粉碳化物复合材料,并用扫描电镜(SEM)、红外光谱(FTIR)以及比表面积(BET)对复合材料进行了表征。再以苯酚为吸附剂采用响应面法优化复合材料的制备工艺参数。实验结果表明,蛭石@碳化淀粉复合材料的较佳制备工艺参数为,淀粉与蛭石的质量比 3∶1、碳化时间15 h、碳化温度 200 ℃;较佳吸附量 16.52 mg/g,苯酚的去除率99.13%。复合材料的比表面积比原蛭石稍有下降,变化不大,电镜和红外光谱图表明淀粉碳化物成功的负载在蛭石的表面。
Abstract:Vermiculite@starch carbide composites were prepared by hydrothermal carbonization of vermiculite and starch. The prepared composites were washed alternately with deionized water and absolute ethanol. The results of scanning electron microscopy (SEM) and infrared spectroscopy (FTIR) showed that starch carbide was successfully loaded on the surface of vermiculite. The preparation process of the composite was optimized by single factor and response surface method based on the phenol adsorbability index of the composite, and the optimal preparation process parameters were obtained as follows: The mass ratio of starch to vermiculite was 2.97∶1, the carbonization time was 15.66 h, and the carbonization temperature was 196.47 ℃. At these conditions, the composite material has the best adsorption performance for phenol, and its adsorption capacity for phenol is 16.521 mg/g, which is 4.304 mg/g higher than that of natural vermiculite.
-
Key words:
- vermiculite /
- starch /
- composite material /
- optimization of preparation process
-
-
表 1 实验方案
Table 1. Test scheme
因子 水平 -1 0 1 A 2.5∶1 3.0∶1 3.5∶1 B/h 12 16 20 C/℃ 190 200 210 表 2 实验设计和对应响应值
Table 2. Test design and corresponding response values
序号 A B/h C/℃ 吸附能力/(mg/g) 1 0 0 0 16.473 4 2 1 0 1 15.183 3 3 0 -1 -1 15.356 2 4 0 0 0 16.280 8 5 1 -1 0 15.701 9 6 1 0 -1 15.280 6 7 0 0 0 16.058 5 8 -1 0 1 15.480 4 9 1 1 0 13.561 5 10 -1 -1 0 14.685 7 11 0 1 -1 15.701 9 12 0 0 0 16.585 5 13 -1 1 0 15.102 3 14 -1 0 -1 15.388 6 15 0 0 0 16.145 9 16 0 1 1 12.620 9 17 0 -1 1 14.875 4 表 3 实验方差结果
Table 3. Test results of variance
方差来源 方差和 df 均方差 F值 P值 Model 14.67 9 1.63 6.41 0.011 4 显著 A 0.108 1 0.108 0.4247 0.535 4 B 1.65 1 1.65 6.48 0.038 3 * C 1.59 1 1.59 6.25 0.041 * AB 1.63 1 1.63 6.43 0.039 * AC 0.008 9 1 0.008 9 0.035 1 0.856 6 BC 1.69 1 1.69 6.64 0.036 6 * A2 0.762 9 1 0.762 9 3 0.126 9 B2 5.28 1 5.28 20.77 0.002 6 ** C2 1.27 1 1.27 5.01 0.060 3 余量 1.78 7 0.254 4 失拟误差 1.59 3 0.529 10.93 0.051 4 不显著 纯误差 0.193 6 4 0.048 4 Cor 总计 16.45 16 注:表中*代表较大影响(P-value<0.05);**代表极大影响(P-value<0.01)。 表 4 实验验证结果
Table 4. Test verification results
序列 吸附量/
(mg/g)吸附率/% 平均吸附量/
(mg/g)平均吸附率/% 1 16.533 99.20 2 16.528 99.17 16.521 99.13 3 16.503 99.02 -
[1] Deka J , Saha K , Yadav A , et al. Clay-based nanofluidic membrane derived from vermiculite nanoflakes for pressure-responsive power generation[J]. ACS Applied Nano Materials, 2021, 4(5):4872-4880.
[2] WAN Y , TIAN J , QIAN G , et al. Ultralow specific surface area vermiculite supporting Mn-Ce-Fe mixed oxides as "curling catalysts" for selective catalytic reduction of NO with NH3[J]. Green Chemical Engineering, 2021, 2(3):284-293.
[3] 刘猛, 封金鹏, 符林总, 等. 蛭石功能化应用研究新进展[J]. 矿产综合利用, 2021(1):14-22.LIU M , FENG J P , FU L Z , et al. New progress in research on functionalization of vermiculite[J]. Multipurpose Utilization of Mineral Resources, 2021(1):14-22.
LIU M , FENG J P , FU L Z , et al. New progress in research on functionalization of vermiculite[J]. Multipurpose Utilization of Mineral Resources, 2021(1):14-22.
[4] 郑天亮, 宇波. 蛭石改性提高蛭石膨胀度的研究[J]. 矿产综合利用, 2004(2):3-6.ZHENG T L , YU B. Study on improvement of expansion degree of vermiculite by modification of vermiculite[J]. Multipurpose Utilization of Mineral Resources, 2004(2):3-6.
ZHENG T L , YU B. Study on improvement of expansion degree of vermiculite by modification of vermiculite[J]. Multipurpose Utilization of Mineral Resources, 2004(2):3-6.
[5] 刘子祯, 余世锋. 马铃薯淀粉、红薯淀粉、木薯淀粉吸水特性的研究[J]. 粮食与油脂, 2021, 34(3):12-16.LIU Z Z , YU S F. Study on water absorption characteristics of potato starch, sweet potato starch and cassava starch[J]. Food and Oils, 2021, 34(3):12-16.
LIU Z Z , YU S F. Study on water absorption characteristics of potato starch, sweet potato starch and cassava starch[J]. Food and Oils, 2021, 34(3):12-16.
[6] 李赛赛, 曹迎楠, 王军凯, 等. 水热碳化法制备碳纳米材料[J]. 材料导报, 2016, 30(9):17-23+35.LI S S , CAO Y N , WANG J K , et al. Preparation of carbon nanomaterials by hydrothermal carbonization[J]. Materials Review, 2016, 30(9):17-23+35.
LI S S , CAO Y N , WANG J K , et al. Preparation of carbon nanomaterials by hydrothermal carbonization[J]. Materials Review, 2016, 30(9):17-23+35.
[7] 李赛赛, 王军凯, 段红娟, 等. 水热碳化制备碳微球及其在Al2O3-SiC-C浇注料中的应用[J]. 硅酸盐学报, 2018, 46(3):341-346.LI S S , WANG J K , DUAN H J , et al. Preparation of carbon microspheres by hydrothermal carbonization and its application in Al2O3-SiC-C castable[J]. Journal of the Chinese Ceramic Society, 2018, 46(3):341-346.
LI S S , WANG J K , DUAN H J , et al. Preparation of carbon microspheres by hydrothermal carbonization and its application in Al2O3-SiC-C castable[J]. Journal of the Chinese Ceramic Society, 2018, 46(3):341-346.
[8] ZHOU F , LI K , HANG F , et al. Efficient removal of methylene blue by activated hydrochar prepared by hydrothermal carbonization and NaOH activation of sugarcane bagasse and phosphoric acid[J]. RSC Adv., 2022, 12(3):1885-1896.
[9] Judith G A , ME Sánchez, Jorge C J , et al. Hydrothermal carbonization of biomass and waste: A review[J]. Environmental chemistry letters, 2022(1):20.
[10] Tjma B , Sjb C , Cmm D. Computational fluid dynamics modelling of phenol oxidation in a trickle-bed reactor using 3D eulerian model[J]. Computer Aided Chemical Engineering, 2021, 50:825-831.
[11] LIU A , CHI D , CHEN S. Palladium-catalyzed cascade allylative dicarbofunctionalization of aryl phenol-tethered alkynes with allyl iodides: synthesis of skipped dienes[J]. Organic Letters, 2021, 23(21):8333-8337.
[12] SHI Y, WANG H, SONG G, et al. Magnetic graphene oxide for methylene blue removal: adsorption performance and comparison of regeneration methods[J]. Environmental Science and Pollution Research, 2022, 29(20):30774-30789. doi: 10.1007/s11356-021-17654-5
[13] HAN Y, WANG J, SONG L, et al. A fundamental role of the molecular length in forming metal–organic hybrids of phenol derivatives on silver surfaces[J]. Journal of Physical Chemistry Letters, 2021, 12(7):1869-1875. doi: 10.1021/acs.jpclett.1c00005
[14] 韦锋, 王琳, 杨海菊, 等. 4-氨基安替比林法测定水中挥发酚的注意事项[J]. 化学工程师, 2019(5):91-92,69.WEI F, WANG L, YANG H J , et al. Considerations for the determination of volatile phenol in water by 4-amino-antipyrine method[J]. Chemical Engineer, 2019(5):91-92,69.
WEI F, WANG L, YANG H J , et al. Considerations for the determination of volatile phenol in water by 4-amino-antipyrine method[J]. Chemical Engineer, 2019(5):91-92,69.
[15] Vinson J A, Su X, Zubik L, et al. Phenol antioxidant quantity and quality in foods: Fruits.[J]. J Agric Food Chem, 2001, 49(11):5315-5321. doi: 10.1021/jf0009293
[16] 方楠, 吴健, 何强, 等. 响应面法优化铁尾矿砂对铜(Ⅱ)的吸附条件[J]. 矿产综合利用, 2020(1):140-145.FANG N, WU J, HE Q, et al. Optimization of adsorption conditions of copper (Ⅱ) from iron tailings by response surface method[J]. Multipurpose Utilization of Mineral Resources, 2020(1):140-145. doi: 10.3969/j.issn.1000-6532.2020.01.029
FANG N, WU J, HE Q, et al. Optimization of adsorption conditions of copper (Ⅱ) from iron tailings by response surface method[J]. Multipurpose Utilization of Mineral Resources, 2020(1):140-145. doi: 10.3969/j.issn.1000-6532.2020.01.029
[17] 王焕龙, 焦芬, 刘维, 等. 响应曲面法优化铅转炉灰的砷浸出过程[J]. 矿产综合利用, 2022(3):181-187.WANG H L , JIAO F, LIU W, et al. Optimization of arsenic leaching process of lead converter ash by response surface method[J]. Multipurpose Utilization of Mineral Resources, 2022(3):181-187.
WANG H L , JIAO F, LIU W, et al. Optimization of arsenic leaching process of lead converter ash by response surface method[J]. Multipurpose Utilization of Mineral Resources, 2022(3):181-187.
[18] 郑锡瀚, 马忻狄, 潘怡莹, 等. 水热碳化法制备淀粉碳化物/海泡石(St-Sep)复合材料的优化[J]. 矿产综合利用, 2021(5):11-19.ZHENG X H , MA X D, PAN Y Y , et al. Preparation of starch carbide/sepiolite (St-Sep) composites by hydrothermal carbonization[J]. Multipurpose Utilization of Mineral Resources, 2021(5):11-19.
ZHENG X H , MA X D, PAN Y Y , et al. Preparation of starch carbide/sepiolite (St-Sep) composites by hydrothermal carbonization[J]. Multipurpose Utilization of Mineral Resources, 2021(5):11-19.
[19] Ockuly R A , Weese M L , Smucker B J , et al. Response surface experiments: a meta-analysis[J]. Chemometrics & Intelligent Laboratory Systems, 2017, 164:64-75.
-