高纯石英砂提纯技术研究进展

魏娇阳, 刘慧阳, 孙增青, 季志云, 甘敏, 范晓慧. 高纯石英砂提纯技术研究进展[J]. 矿产综合利用, 2025, 46(4): 10-19. doi: 10.12476/kczhly.202412270339
引用本文: 魏娇阳, 刘慧阳, 孙增青, 季志云, 甘敏, 范晓慧. 高纯石英砂提纯技术研究进展[J]. 矿产综合利用, 2025, 46(4): 10-19. doi: 10.12476/kczhly.202412270339
WEI Jiaoyang, LIU Huiyang, SUN Zengqing, JI Zhiyun, GAN Min, FAN Xiaohui. Research Progress on Purification Technology for High-purity Quartz Sand[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(4): 10-19. doi: 10.12476/kczhly.202412270339
Citation: WEI Jiaoyang, LIU Huiyang, SUN Zengqing, JI Zhiyun, GAN Min, FAN Xiaohui. Research Progress on Purification Technology for High-purity Quartz Sand[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(4): 10-19. doi: 10.12476/kczhly.202412270339

高纯石英砂提纯技术研究进展

  • 基金项目: 国家自然科学基金项目(52474314)
详细信息
    作者简介: 魏娇阳(1999-),女,博士研究生,主要从事矿物加工研究
    通讯作者: 孙增青(1988-),男,博士,教授,主要从事高纯矿物材料、矿产资源综合利用研究
  • 中图分类号: TD925.6

Research Progress on Purification Technology for High-purity Quartz Sand

More Information
  • 高纯石英砂作为战略性新兴产业如半导体、光伏、光纤通信和新能源等领域的关键基础材料,其生产过程面临着资源和技术上的双重壁垒。概述了不同类型石英矿的原矿特征及其在高纯石英领域的适用性,并介绍了高纯石英砂的矿源分布;总结了石英脉石矿物杂质、包裹体杂质及晶格杂质这三类杂质的赋存形态;围绕石英提纯的典型除杂手段,详细阐述了石英砂浮选、酸浸、热处理各提纯技术的特点、局限性及研究进展;结合高纯石英砂资源开发现状和提纯技术进展,探讨了未来高纯石英砂提纯研究的发展趋势,以期为中国高纯石英砂的自主工业化生产提供参考。

  • 加载中
  • 图 1  α-石英晶体结构[3]

    Figure 1. 

    图 2  石英多晶相变[5]

    Figure 2. 

    图 3  石英晶格杂质元素的结构[21]

    Figure 3. 

    图 4  典型石英提纯工艺流程[23]

    Figure 4. 

    图 5  晶体结构杂质氯化反应过程

    Figure 5. 

    表 1  常见SiO2同质多象变体[3]

    Table 1.  Some common polymorphic variants of SiO2[3]

    名称α-石英β-石英α-鳞石英β-鳞石英α-方石英β-方石英奇石英柯石英斯石英
    晶型三方晶系六方晶系正方晶系六方晶系四方晶系等轴晶系四方晶系单斜晶系四方晶系
    下载: 导出CSV

    表 2  石英矿床类型、成因及应用特点[6-8]

    Table 2.  Quartz deposit types, genesis and application characteristics [6-8]

    类型 形成条件 特点 应用
    天然水晶 常于岩洞、岩石裂缝或节理、断层中自然生长形成 生长条件苛刻,矿床规模小、储量小 曾经是高纯石英原料,目前主要为水晶工艺品原料
    脉石英 常于岩浆热液活动过程中由热液中的二氧化硅冷却凝固结晶形成 矿体呈不规则脉状、产状陡,开采困难;矿床规模较小、储量小;致密块状构造,矿物成分单一 SiO2含量99.0%~99.9%产品原料,高纯石英的重要原料
    花岗伟晶岩石英 常由深部岩浆在地壳中结晶而成 矿床规模较大,石英杂质少 高纯石英的主要原料
    粉石英 自然风化、淋滤、碎解等特殊地质条件下形成的沉积风化型矿床 矿床规模较小,SiO2含量通常为95%~99%,粉状、疏松多孔,自然白度高,容易超细粉碎加工 常作为陶瓷原料、硅微粉填料等
    石英砂岩 经过沉积作用固结的砂质沉积岩 矿床规模较大,产状稳定,开采条件较好,SiO2含量一般大于95%,其中胶结物成分比较复杂 SiO2 99%±产品原料,适合生产高纯石英的原料较少
    石英岩 由石英砂岩或其他硅质岩经区域变质作用或热接触变质作用形 矿床有规模大,资源丰富,地质产状稳定、开采条件较好,SiO2含量一般在 90%以上 金属硅、SiO2 99%±产品的原料,全岩的SiO2含量较高时可作为高纯石英的原料
    天然石英砂 由石英砂岩、石英岩等母岩经自然界长期风化形成沉积砂矿床 矿床规模较大,天然粒度适中,开采简单;杂质成分比较多 SiO2 99%±产品的原料
    下载: 导出CSV

    表 3  美国尤尼明IOTA-CG石英砂杂质含量[9]单位:g/t

    Table 3.  Impurity content of Unimin IOTA-CG quartz sand from the USA

    AlBCaCrCuFeKLiMgMnNaNiPTi
    140.100.600.007 00.0190.300.700.500.0400.0291.00.001 00.101.2
    下载: 导出CSV

    表 4  主要脉石矿物及其杂质元素[3, 17]

    Table 4.  Main gangue minerals and their impurity elements [3, 17]

    矿物种类主要杂质元素
    云母、粘土Al、Mg、K
    方解石、萤石Ca
    赤铁矿、黄铁矿Fe
    金红石、锐钛矿Ti
    钠长石、钾长石、透辉石Al、Na、K
    下载: 导出CSV
  • [1]

    李作敏, 谭秀民, 张亮, 等. 我国石英资源的开发利用特点及应用进展[J]. 矿产保护与利用, 2024, 44(2):115-123.LI Z M, TAN X M, ZHANG L, et al. Utilization characteristics and application progress of quartz resources[J]. Conservation and Utilization of Mineral Resources, 2024, 44(2):115-123.

    LI Z M, TAN X M, ZHANG L, et al. Utilization characteristics and application progress of quartz resources[J]. Conservation and Utilization of Mineral Resources, 2024, 44(2):115-123.

    [2]

    杜鑫. 粉石英矿高纯加工基础与选矿提纯工艺研究[D]. 北京:中国矿业大学(北京), 2022.DU X. Basic study on the high purity processing and purification technology of natural powder quartz[D]. Beijing: China University of Mining & Technology, Beijing, 2022.

    DU X. Basic study on the high purity processing and purification technology of natural powder quartz[D]. Beijing: China University of Mining & Technology, Beijing, 2022.

    [3]

    周方革. 无氟无硝法制备4N高纯石英砂的工艺研究[D]. 株洲:湖南工业大学, 2022.ZHOU F G. Study on the process of preparing 4N high-purity quartz sand by fluorine- and nitrate-free method [D]. Zhuzhou: Hunan Agricultural University, 2022.

    ZHOU F G. Study on the process of preparing 4N high-purity quartz sand by fluorine- and nitrate-free method [D]. Zhuzhou: Hunan Agricultural University, 2022.

    [4]

    杨晓勇, 孙超, 曹荆亚, 等. 高纯石英的研究进展及发展趋势[J]. 地学前缘, 2022, 29(1):231-244.YANG X Y, SUN C, CAO J Y, et al. High purity quartz: research progress and perspective review[J]. Earth Science Frontiers, 2022, 29(1):231-244.

    YANG X Y, SUN C, CAO J Y, et al. High purity quartz: research progress and perspective review[J]. Earth Science Frontiers, 2022, 29(1):231-244.

    [5]

    宋望峰. 微波氯化煅烧提纯石英砂及其机理研究[D]. 合肥:中国科学技术大学, 2022.SONG W F. Study on purification of quartz sand by microwave chlorination calcination ad its mechanism [D]. Hefei: University of Science and Technology of China, 2022.

    SONG W F. Study on purification of quartz sand by microwave chlorination calcination ad its mechanism [D]. Hefei: University of Science and Technology of China, 2022.

    [6]

    张亮, 刘磊, 朱黎宽, 等. 关于高纯石英原料矿石地质学评价方法的探讨[J]. 岩石学报, 2024, 40(4):1311-1326.ZHANG L, LIU L, ZHU L K, et al. Discussion on the geological evaluation for high purity quartz raw material[J]. Acta Petrologica Sinica, 2024, 40(4):1311-1326. doi: 10.18654/1000-0569/2024.04.16

    ZHANG L, LIU L, ZHU L K, et al. Discussion on the geological evaluation for high purity quartz raw material[J]. Acta Petrologica Sinica, 2024, 40(4):1311-1326. doi: 10.18654/1000-0569/2024.04.16

    [7]

    汪灵. 石英的矿床工业类型与应用特点[J]. 矿产保护与利用, 2019, 39(6):39-47.WANG L. Industrial types and application characteristics of quartz ore deposits[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6):39-47.

    WANG L. Industrial types and application characteristics of quartz ore deposits[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6):39-47.

    [8]

    袁晶, 唐春花, 钱正江, 等. 江西石英资源现状及开发利用建议: 第十七届华东六省一市地质科技论坛[C]. 威海, 2023.YUAN J, TANG C H, QIAN Z J, et al. Present situation of quartz resources in Jiangxi and suggestions for development and utilization [C]. Jiangxi Geological Survey and Exploration Institute, 2023.

    YUAN J, TANG C H, QIAN Z J, et al. Present situation of quartz resources in Jiangxi and suggestions for development and utilization [C]. Jiangxi Geological Survey and Exploration Institute, 2023.

    [9]

    刘慧阳, 孙增青, 李晓宇, 等. 高纯石英砂氯化焙烧技术研究进展[J]. 化工矿物与加工, 2024:1-9.LIU H Y, SUN Z Q, LI X Y, et al. Research progress on chlorination roasting technology for high-purity quartz sand [J]. Industrial Minerals & Processing, 2024:1-9.

    LIU H Y, SUN Z Q, LI X Y, et al. Research progress on chlorination roasting technology for high-purity quartz sand [J]. Industrial Minerals & Processing, 2024:1-9.

    [10]

    武志超, 张海啟, 谭秀民, 等. 高纯石英应用及化学提纯技术研究进展[J]. 化工矿物与加工, 2023, 52(9):72-80.WU Z C, ZHANG H Q, TAN X M, et al. Research progress on the application of high-purity quartz and its chemical refinement technology[J]. Industrial Minerals & Processing, 2023, 52(9):72-80.

    WU Z C, ZHANG H Q, TAN X M, et al. Research progress on the application of high-purity quartz and its chemical refinement technology[J]. Industrial Minerals & Processing, 2023, 52(9):72-80.

    [11]

    王登红, 王岩, 陈郑辉, 等. 试论高纯石英原料矿的找矿方向[J]. 地球学报, 2024:1-7.WANG D H, WANG Y, CHEN Z H, et al. Discussion on the prospecting direction of high-purity quartz deposit [J]. Acta Geoscientica Sinica, 2024: 1-7.

    WANG D H, WANG Y, CHEN Z H, et al. Discussion on the prospecting direction of high-purity quartz deposit [J]. Acta Geoscientica Sinica, 2024: 1-7.

    [12]

    唐春花, 张生辉, 袁晶, 等. 江西宁都白云母伟晶花岗岩型高纯石英用硅质原料矿床特征与资源潜力[J]. 地质通报, 2024, 43(5):667-679.TANG C H, ZHANG S H, YUAN J, et al. Deposit characteristics and potential resources of silicon material for high-purity quartz of muscovite-pegmatite-granite type in Ningdu, Jiangxi Province[J]. Geological Bulletin of China, 2024, 43(5):667-679.

    TANG C H, ZHANG S H, YUAN J, et al. Deposit characteristics and potential resources of silicon material for high-purity quartz of muscovite-pegmatite-granite type in Ningdu, Jiangxi Province[J]. Geological Bulletin of China, 2024, 43(5):667-679.

    [13]

    张海啟, 谭秀民, 马亚梦, 等. 新疆阿尔泰伟晶岩型高纯石英矿床地质特征及4N8级产品制备技术[J]. 矿产保护与利用, 2022, 42(5):1-7.ZHANG H Q, TAN X M, MA Y M, et al. Geological characteristics of pegmatite-type high purity quartz in altay, xinjiang and preparation technology of 4N8 grade products[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5):1-7.

    ZHANG H Q, TAN X M, MA Y M, et al. Geological characteristics of pegmatite-type high purity quartz in altay, xinjiang and preparation technology of 4N8 grade products[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5):1-7.

    [14]

    赵金洲, 张驰, 张森森, 等. 东秦岭花岗伟晶岩中高纯石英矿物的可利用性研究[J]. 矿物岩石地球化学通报, 2022, 41(6):1305-1308.ZHAO J Z, ZHANG C, ZHANG S S, et al. Study on the current situation and industrial development of high purity quartz resources in Henan Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(6):1305-1308.

    ZHAO J Z, ZHANG C, ZHANG S S, et al. Study on the current situation and industrial development of high purity quartz resources in Henan Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(6):1305-1308.

    [15]

    罗小南, 索忠连, 茹朋, 等. 河南省高纯石英资源现状及产业发展的思考[J]. 矿产勘查, 2023, 14(11):2271-2277.LUO X N, SUO Z L, RU P, et al. Study on the current situation and industrial development of high purity quartz resources in Henan Province[J]. Mineral Exploration, 2023, 14(11):2271-2277.

    LUO X N, SUO Z L, RU P, et al. Study on the current situation and industrial development of high purity quartz resources in Henan Province[J]. Mineral Exploration, 2023, 14(11):2271-2277.

    [16]

    邱冬生,马群,邱昌,等. 高纯石英用硅质原料评价工作有关问题探讨[J]. 中国非金属矿工业导刊, 2025(1):1-5.QIU D S, MA Q, QIU C, et al. The discussion on issues related to the evaluation of silicon materials for high purity quartz[J]. China Non-metallic Minerals Industry, 2025(1):1-5. doi: 10.3969/j.issn.1007-9386.2025.01.001

    QIU D S, MA Q, QIU C, et al. The discussion on issues related to the evaluation of silicon materials for high purity quartz[J]. China Non-metallic Minerals Industry, 2025(1):1-5. doi: 10.3969/j.issn.1007-9386.2025.01.001

    [17]

    吴逍. 高纯石英原料选择评价及提纯工艺研究[D]. 成都:西南科技大学, 2016.WU Y. Selection and evaluation of high purity quartz materials and purification technology research [D]. Chengdu: Southwest University of Science and Technology, 2016.

    WU Y. Selection and evaluation of high purity quartz materials and purification technology research [D]. Chengdu: Southwest University of Science and Technology, 2016.

    [18]

    钟乐乐. 超高纯石英纯化制备及机理研究[D]. 武汉:武汉理工大学, 2015.ZHONG L L. Study on purifing preparation and mechanism of ultra - pure quart [D]. Wuhan: Wuhan University of Technology, 2015.

    ZHONG L L. Study on purifing preparation and mechanism of ultra - pure quart [D]. Wuhan: Wuhan University of Technology, 2015.

    [19]

    田青越. 脉石英晶体化学特征及其与高纯石英提纯效果的关系[D]. 成都:成都理工大学, 2017.TIAN Q Y. Crystal chemical characteristics of vein quartz and its relationship of making high purity quartz [D]. Chengdu: Chengdu University of Technology, 2017.

    TIAN Q Y. Crystal chemical characteristics of vein quartz and its relationship of making high purity quartz [D]. Chengdu: Chengdu University of Technology, 2017.

    [20]

    张洪武. 石英矿中Al/Fe/气液包裹体强化去除制备高纯石英砂实验研究[D]. 昆明:昆明理工大学, 2021.ZHANG H W. Experimental study on enhanced removal of Al/Fe/gas-liquid inclusions in quartz ore to prepare high-purity quartz sand [D]. Kunming: Kunming University of Technology, 2021.

    ZHANG H W. Experimental study on enhanced removal of Al/Fe/gas-liquid inclusions in quartz ore to prepare high-purity quartz sand [D]. Kunming: Kunming University of Technology, 2021.

    [21]

    Muller A, Wanvik J E, Ihlen P M. Petrological and chemical characterisation of high-purity quartz deposits with examples from Norway [J]. Quartz: Deposits, Mineralogy and Analytics, 2012, 71-118.

    [22]

    林敏, 徐顺秋, 刘子源, 等. 高纯石英(SiO2)评述(三):流体包裹体的分析、活化与分离[J]. 矿产综合利用, 2022(6):26-29.LIN M, XU S Q, LIU Z Y, et al. Review for high-purity quartz (SiO2) (Part Ⅲ): analysis, activation and separation of fluid inclusions[J]. Multipurpose Utilization of Mineral Resources, 2022(6):26-29. doi: 10.3969/j.issn.1000-6532.2022.06.005

    LIN M, XU S Q, LIU Z Y, et al. Review for high-purity quartz (SiO2) (Part Ⅲ): analysis, activation and separation of fluid inclusions[J]. Multipurpose Utilization of Mineral Resources, 2022(6):26-29. doi: 10.3969/j.issn.1000-6532.2022.06.005

    [23]

    孙雨欣, 李育彪, 靳晨杰, 等. 江西遂川坚基石英提纯试验研究[J]. 非金属矿, 2024, 47(S5):56-59.SUN Y X, LI Y B, JIN C J, et al. Study on quartz purification from Jiangxi Suichuan Jianji[J]. Non-Metallic Mines, 2024, 47(S5):56-59. doi: 10.3969/j.issn.1000-8098.2024.05.015

    SUN Y X, LI Y B, JIN C J, et al. Study on quartz purification from Jiangxi Suichuan Jianji[J]. Non-Metallic Mines, 2024, 47(S5):56-59. doi: 10.3969/j.issn.1000-8098.2024.05.015

    [24]

    谢贞付, 王毓华, 于福顺. 浮选-酸浸实现石英砂高纯化的研究[J]. 非金属矿, 2013, 36(5):41-42.XIE Z F, WANG Y H, YU F S. Study on high purification for a quartz sand by flotation and acid leaching[J]. Non-Metallic Mines, 2013, 36(5):41-42. doi: 10.3969/j.issn.1000-8098.2013.05.014

    XIE Z F, WANG Y H, YU F S. Study on high purification for a quartz sand by flotation and acid leaching[J]. Non-Metallic Mines, 2013, 36(5):41-42. doi: 10.3969/j.issn.1000-8098.2013.05.014

    [25]

    马晓光, 陈子璇, 张寒. 高纯石英砂浮选工艺与药剂研究进展[J]. 化工矿物与加工, 2024, 53(3):80-86.MA X G, CHEN Z X, ZHANG H. Research progress on flotation technology and reagents for high-purity quartz sand[J]. Industrial Minerals & Processing, 2024, 53(3):80-86.

    MA X G, CHEN Z X, ZHANG H. Research progress on flotation technology and reagents for high-purity quartz sand[J]. Industrial Minerals & Processing, 2024, 53(3):80-86.

    [26]

    聂轶苗, 刘淑贤, 王森, 等. 石英长石无氟浮选分离的研究现状及进展[J]. 化工矿物与加工, 2015, 44(7):51-54.NIE Y M, LIU S X, WANG S, et al. Current status and progress on research of separating quartz and feldspar by flotation without fluoride[J]. Industrial Minerals & Processing, 2015, 44(7):51-54.

    NIE Y M, LIU S X, WANG S, et al. Current status and progress on research of separating quartz and feldspar by flotation without fluoride[J]. Industrial Minerals & Processing, 2015, 44(7):51-54.

    [27]

    雷绍民, 裴振宇, 钟乐乐, 等. 脉石英砂无氟反浮选热压浸出技术与机理研究[J]. 非金属矿, 2014, 37(2):40-43.LEI S M, PEI Z Y, ZHONG L L, et al. Study on the technology and mechanism of reverse flotation and hot pressing leaching with vein quartz[J]. Non-metallic Mines, 2014, 37(2):40-43. doi: 10.3969/j.issn.1000-8098.2014.02.013

    LEI S M, PEI Z Y, ZHONG L L, et al. Study on the technology and mechanism of reverse flotation and hot pressing leaching with vein quartz[J]. Non-metallic Mines, 2014, 37(2):40-43. doi: 10.3969/j.issn.1000-8098.2014.02.013

    [28]

    陈琳璋. 石英与长石的浮选分离研究[D]. 长沙:湖南工业大学, 2014.CHEN L Z. Research on flotation separation of quartz and feldspar [D]. Changsha: Hunan University of Technology, 2014.

    CHEN L Z. Research on flotation separation of quartz and feldspar [D]. Changsha: Hunan University of Technology, 2014.

    [29]

    张海啟, 马亚梦, 谭秀民, 等. 高纯石英中杂质特征及深度化学提纯技术研究进展[J]. 矿产保护与利用, 2022, 42(4):159-165.ZHANG H Q, MA Y M, TAN X M, et al. Research progress on impurity characteristics and deep chemical purification technology in high-purity quartz[J]. Conservation and Utilization of Mineral Resources, 2022, 42(4):159-165.

    ZHANG H Q, MA Y M, TAN X M, et al. Research progress on impurity characteristics and deep chemical purification technology in high-purity quartz[J]. Conservation and Utilization of Mineral Resources, 2022, 42(4):159-165.

    [30]

    Lee K Y, Yoon Y Y, Jeong S B, et al. Acid leaching purification and neutron activation analysis of high purity silicas[J]. Journal of Radioanalytical & Nuclear Chemistry, 2009, 282(2):629-633.

    [31]

    Zhong L L, Lei S M, Wang E W, et al. Research on removal impurities from vein quartz sand with complexing agents[J]. Applied Mechanics & Materials, 2013, 454:194-199.

    [32]

    马球林. 石英中金属元素迁移扩散及其机理研究[D]. 武汉:武汉理工大学, 2015.MA Q L. Research on migration and diffusion mechanism of metallic elements in quartz [D]. Wuhan: Wuhan University of Technology, 2015.

    MA Q L. Research on migration and diffusion mechanism of metallic elements in quartz [D]. Wuhan: Wuhan University of Technology, 2015.

    [33]

    杜飞虎. 超声辅助草酸提高石英砂中铁杂质的去除[D]. 镇江:江苏大学, 2010.DU F H. Improvement of iron removal from silica sand using ultrasound-assisted oxalic acid [D]. Zhenjiang: Jiangsu University, 2010.

    DU F H. Improvement of iron removal from silica sand using ultrasound-assisted oxalic acid [D]. Zhenjiang: Jiangsu University, 2010.

    [34]

    Li F, Jiang X, Zuo Q, et al. Purification mechanism of quartz sand by combination of microwave heating and ultrasound assisted acid leaching treatment[J]. Silicon, 2021(2):13.

    [35]

    Li Y, Li S, Pan X, et al. Eco-friendly strategy for preparation of high-purity silica from high-silica IOTs using S-HGMS coupling with ultrasound-assisted fluorine-free acid leaching technology[J]. Journal of Environmental Management, 2023, 339:117932. doi: 10.1016/j.jenvman.2023.117932

    [36]

    李勇, 章毛连, 张雪梅. 超声波清洗对石英砂粒度和白度影响的研究[J]. 硅酸盐通报, 2014, 33(2):284-290.LI Y, ZHANG M L, ZHANG X M. Study on the effect of ultrasonic cleaning on quartz sand particle size and whiteness[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(2):284-290.

    LI Y, ZHANG M L, ZHANG X M. Study on the effect of ultrasonic cleaning on quartz sand particle size and whiteness[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(2):284-290.

    [37]

    熊康, 裴振宇, 臧芳芳, 等. 混合酸浸出制备高纯石英工艺及机理研究[J]. 非金属矿, 2016, 39(3):60-62.XIONG K, PEI Z Y, ZANG F F, et al. Process and mechanism of high-purity quartz prepared by mixed acid leaching[J]. Non-metallic Mines, 2016, 39(3):60-62. doi: 10.3969/j.issn.1000-8098.2016.03.019

    XIONG K, PEI Z Y, ZANG F F, et al. Process and mechanism of high-purity quartz prepared by mixed acid leaching[J]. Non-metallic Mines, 2016, 39(3):60-62. doi: 10.3969/j.issn.1000-8098.2016.03.019

    [38]

    胡祥琳, 李育彪, 李佩悦, 等. 江西某脉石英制备4N5级高纯石英砂试验研究[J]. 非金属矿, 2024, 47(2):59-62.HU X L, LI Y B, LI P Y, et al. Experimental study on the preparation of 4N5 high-purity quartz sand from vein quartz in Jiangxi province[J]. Non-Metallic Mines, 2024, 47(2):59-62. doi: 10.3969/j.issn.1000-8098.2024.02.014

    HU X L, LI Y B, LI P Y, et al. Experimental study on the preparation of 4N5 high-purity quartz sand from vein quartz in Jiangxi province[J]. Non-Metallic Mines, 2024, 47(2):59-62. doi: 10.3969/j.issn.1000-8098.2024.02.014

    [39]

    Hou Q, Chen P, Tian L, et al. Study on crack mechanism of gas-liquid inclusions in quartz sand under microwave heating[J]. E3S Web of Conferences, 2021, 248:1067. doi: 10.1051/e3sconf/202124801067

    [40]

    Guo S, Ai G, Zhao J, et al. Removal of hydroxyl impurities in vein quartz by vacuum roasting[J]. Vacuum, 2024, 222:113049. doi: 10.1016/j.vacuum.2024.113049

    [41]

    林敏. 脉石英中白云母、晶格杂质分离及机理[D]. 武汉:武汉理工大学, 2018.LIN M. Mechanism of removing muscovite and lattice imputiry elements from vein quartz [D]. Wuhan: Wuhan University of Technology, 2018.

    LIN M. Mechanism of removing muscovite and lattice imputiry elements from vein quartz [D]. Wuhan: Wuhan University of Technology, 2018.

    [42]

    潘俊良. 氯化焙烧法制备4N8标准级高纯石英试验研究[D]. 成都:成都理工大学, 2015.PAN J L. Experimental study of 4N8 standard grade high-purity quartz prepared by chlorination roasting method [D]. Chengdu: Chengdu University of Technology, 2015.

    PAN J L. Experimental study of 4N8 standard grade high-purity quartz prepared by chlorination roasting method [D]. Chengdu: Chengdu University of Technology, 2015.

    [43]

    娄陈林, 张国君, 欧阳葆华, 等. 石英砂高温氯化提纯研究[J]. 化工矿物与加工, 2020, 49(1):16-19.LOU C L, ZHANG G J, OUYANG B H, et al. Study on high temperature chlorination purification of quartz sand[J]. Industrial Minerals & Processing, 2020, 49(1):16-19.

    LOU C L, ZHANG G J, OUYANG B H, et al. Study on high temperature chlorination purification of quartz sand[J]. Industrial Minerals & Processing, 2020, 49(1):16-19.

  • 加载中

(5)

(4)

计量
  • 文章访问数:  68
  • PDF下载数:  67
  • 施引文献:  0
出版历程
收稿日期:  2024-12-27
刊出日期:  2025-08-25

目录