-
摘要:
基于穆棱河-兴凯湖平原1:25万土地质量地球化学调查土壤养分元素数据,参照《土地质量地球化学评价规范》(DZ/T 0295—2016),采用单指标评价法对研究区土壤养分进行分别和综合评价.结果表明:研究区内全氮、全磷、有机质、硫、锰、钼、氧化铁以丰富—较丰富为主,全钾以三等适中为主,研究区缺乏氧化钙、氧化镁、硼、锌、铜.土壤养分综合指数显示,穆兴平原土地以丰富(一等)及较丰富(二等)为主.发现了富硒土地资源面积344 km2,土壤中硒含量在0.4×10-6~0.79×10-6之间,平均值为0.44×10-6,占研究区总面积的2.07%.
Abstract:Based on the soil nutrient element data of 1:250 000 land quality geochemical survey in Muling River-Xingkai Lake Plain, referring to the Code for Land Quality Geochemical Evaluation(DZ/T0295-2016), the single index evaluation method is used to evaluate the soil nutrients respectively and comprehensively in the region. The results indicate that the study area is characterized by rich or relatively rich total nitrogen, total phosphorus, organic matter, sulfur, manganese, molybdenum and iron oxide, medium (third-grade) total potassium, and deficient calcium oxide, magnesium oxide, boron, zinc and copper. The soil nutrient composite indexes show the land of Muxing Plain is mainly rich (first grade) and relatively rich (second grade). The Se-rich land area of 344 km2 is recognized, with soil Se content of 0.4×10-6-0.79×10-6, averagely 0.44×10-6, accounting for 2.07% of the total area.
-
Key words:
- soil nutrient /
- geochemical evaluation /
- Se-rich soil /
- Muling River-Xingkai Lake Plain
-
-
表 1 土壤元素分析方法及检出限
Table 1. Analysis methods and detection limits of soil elements
序号 元素 检出限 分析方法 实测 要求 单位 1 B 0.3 1 10-6 ES 2 Cu 1 1 10-6 XRF 3 Mn 2.1 10 10-6 XRF 4 Mo 0.12 0.3 10-6 ICP-MS 5 N 17 20 10-6 VOL 6 P 10 10 10-6 XRF 7 S 50 50 10-6 XRF 8 Zn 4 4 10-6 XRF 9 K2O 0.05 0.05 % XRF 10 Corg 0.02 0.1 % VOL 11 TFe2O3 0.05 0.05 % XRF 12 CaO 0.05 0.05 % XRF 13 MgO 0.03 0.05 % ICP-OES 14 F 92 100 10-6 ISE 15 Se 0.01 0.01 10-6 AFS 16 I 0.3 0.5 10-6 COL 注:AFS-原子荧光法;ISE-离子选择电极法;XRF-X荧光光谱法;VOL-容量法;ES-发射光谱法;GL-玻璃电极法;ICP-等离子发射光谱法. 表 2 土壤大量元素含量等级分布面积及比例
Table 2. Distribution area and proportion of soil macroelements by content grade
成分 分布 一等(丰富) 二等(较丰富) 三等(中等) 四等(较缺乏) 五等(缺乏) 全氮 面积/km2 10120 4308 1944 112 124 比例/% 60.93 25.94 11.71 0.67 0.75 全磷 面积/km2 5648 5064 4372 1384 140 比例/% 34.01 30.49 26.32 8.33 0.84 全钾 面积/km2 152 2780 13544 132 0 比例/% 0.92 16.74 81.55 0.79 0 有机质 面积/km2 10364 4120 1812.00 260 52 比例/% 62.40 24.81 10.91 1.57 0.31 表 3 土壤全氮、全磷、全钾、有机质相关性分析
Table 3. Correlation analysis of total nitrogen, total phosphorus, total potassium and organic matter in soil
全氮 全磷 全钾 有机质 全氮 1 全磷 0.618** 1 全钾 -0.350** -0.333** 1 有机质 0.956** 0.568** -0.311** 1 注:*代表在0.05上存在显著相关性,**代表在0.01上存在显著相关性. 表 4 土壤中量元素含量等级分布面积及比例
Table 4. Distribution area and proportion of soil medium-content elements by content grade
成分 分布 一等(丰富) 二等(较丰富) 三等(中等) 四等(较缺乏) 五等(缺乏) CaO 面积/km2 0 64 2968 13536 40 比例/% 0 0.39 17.87 81.50 0.24 MgO 面积/km2 76 164 1060 13864 1444 比例/% 0.46 0.99 6.38 83.48 8.69 S 面积/km2 3528 5464 4168 2532 916 比例/% 21.24 32.90 25.10 15.25 5.52 表 5 土壤微量元素含量等级分布面积及比例
Table 5. Distribution area and proportion of soil microelements by content grade
成分 分布 一等(丰富) 二等(较丰富) 三等(中等) 四等(较缺乏) 五等(缺乏) TFeO3 面积/km2 3380 5056 3632 3384 1156 比例/% 20.35 30.44 21.87 20.38 6.96 Mn 面积/km2 9636 1736 1608 1824 1804 比例/% 58.02 10.45 9.68 10.98 10.86 Zn 面积/km2 1116 2172 3120 6776 3424 比例/% 6.72 13.08 18.79 40.80 20.62 Cu 面积/km2 812 3276 4252 5700 2568 比例/% 4.89 19.73 25.60 34.32 15.46 B 面积/km2 12 44 1192 10600 4760 比例/% 0.07 0.26 7.18 63.82 28.66 Mo 面积/km2 7516 6748 1740 432 172 比例/% 45.26 40.63 10.48 2.60 1.04 表 6 土壤健康元素含量等级分布面积及比例
Table 6. Distribution area and proportion of soil healthy elements by content grade
元素 分布 一等(过剩) 二等(高) 三等(适量) 四等(边缘) 五等(缺乏) Se 面积/km2 0 344 13332 2396 536 比例/% 0 2.07 80.27 14.43 3.23 I 面积/km2 0 32 10364 4472 1740 比例/% 0 0.19 62.40 26.93 10.48 F 面积/km2 80 1156 1696 7960 5716 比例/% 0.48 6.96 10.21 47.93 34.42 表 7 土壤养分综合等级分布面积及比例
Table 7. Distribution area and proportion of soil nutrient by comprehensive grade
分布 一等(丰富) 二等(较丰富) 三等(中等) 四等(较缺乏) 五等(缺乏) 面积/km2 5032 7472 3783 303 19 比例/% 30.30 44.99 22.78 1.82 0.11 -
[1] 崔小顺, 郑昭贤, 程中双, 等. 穆兴平原北区浅层地下水水化学分布特征及其形成机理[J]. 南水北调与水利科技, 2018, 16(4): 146-153.
Cui X S, Zheng Z X, Cheng Z S, et al. Hydrochemical distribution characteristics of shallow groundwater in the north of Muling-Xingkai Plain and their formation mechanism[J]. South to North Water Transfers and Water Science & Technology, 2018, 16(4): 146-153.
[2] 杨飘娟. 两种衰老类型小麦的耐寒性和花后糖、矿物质的积累特性[D]. 杨凌: 西北农林科技大学, 2018.
Yang P J. The cold tolerance and accumulation characteristics of post-anthesis sugar and mineral in two senescence types of wheat[D]. Yangling: Northwest A & F University, 2018.
[3] 刘国栋, 崔玉军, 刘立芬, 等. 土地质量地球化学评价方法研究与应用: 以黑龙江省宏胜镇为例[J]. 现代地质, 2017, 31(1): 167-176. doi: 10.3969/j.issn.1000-8527.2017.01.015
Liu G D, Cui Y J, Liu L F, et al. The study and application of land quality geochemical evaluation method: Illustrated by the case of Hongsheng Town, Heilongjiang Province[J]. Geoscience, 2017, 31(1): 167-176. doi: 10.3969/j.issn.1000-8527.2017.01.015
[4] 于磊, 张柏, 张树清. 基于GIS的三江平原生态环境地球化学质量评价研究[J]. 土壤通报, 2004, 35(5): 529-532. doi: 10.3321/j.issn:0564-3945.2004.05.001
Yu L, Zhang B, Zhang S Q, et al. Heavy metal elements pollution evaluation on the ecological of the Sanjiang Plant based on GIS[J]. Chinese Journal of Soil Science, 2004(05): 529-532. doi: 10.3321/j.issn:0564-3945.2004.05.001
[5] 张慧, 雷国平, 张莹. 黑龙江省松嫩平原南部土地质量地球化学评价[J]. 哈尔滨师范大学自然科学学报, 2011, 27(1): 78-83. doi: 10.3969/j.issn.1000-5617.2011.01.023
Zhang H, Lei G, Zhang Y. Geochemical evaluation of land quality in southern Songnen Plain of Heilongjiang Province[J]. Natural Science Journal of Harbin Normal University, 2011, 27(1): 78-83. doi: 10.3969/j.issn.1000-5617.2011.01.023
[6] 中华人民共和国国土资源部. DZ/T 0295-2016土地质量地球化学评价规范[S]. 北京: 中国标准出版社, 2016: 26-27.
Ministry of Land And Resources of the people's Republic of China. Code for geochemical evaluation of land quality[S]. Beijing: Geological Publishing House, 2016: 26-27. (in Chinese)
[7] 孙淑梅, 张连志, 闫冬. 吉林省德惠-农安地区土地质量地球化学评估[J]. 现代地质, 2008, 22(6): 998-1002. doi: 10.3969/j.issn.1000-8527.2008.06.016
Sun S M, Zhang L Z, Yan D, et al. Experimental study on method and technique of land quality geochemical assessment[J]. Geoscience, 2008, 22(6): 998-1002. doi: 10.3969/j.issn.1000-8527.2008.06.016
[8] 于成广, 杨忠芳, 杨晓波, 等. 土地质量地球化学评估方法研究与应用: 以盘锦市为例[J]. 现代地质, 2012, 26(5): 873-878, 909. doi: 10.3969/j.issn.1000-8527.2012.05.005
Yu C G, Yang Z F, Yang X B, et al. Study and application on land quality geochemical assessment methods: Taking Panjin City as an example[J]. Geoscience, 2012(5): 873-878. doi: 10.3969/j.issn.1000-8527.2012.05.005
[9] 张福锁, 崔振岭, 王激清, 等. 中国土壤和植物养分管理现状与改进策略[J]. 植物学通报, 2007, 24(6): 687-694. doi: 10.3969/j.issn.1674-3466.2007.06.001
Zhang F S, Cui Z L, Wang J Q. Current situation and improvement strategy of soil and plant nutrient management in China[J]. Chinese Bulletin of Botany, 2007(6): 687-694. doi: 10.3969/j.issn.1674-3466.2007.06.001
[10] 徐欢, 俞新玲, 林勇明, 等. 桉树根际土壤解磷细菌的分离、筛选及其解磷效果[J]. 福建农林大学学报(自然科学版), 2016, 45(5): 529-535. https://www.cnki.com.cn/Article/CJFDTOTAL-FJND201605010.htm
Xu H, Yu X L, Lin Y M, et al. Isolation, screening of phosphate solubilizing capacity of phosphate solubilizing bacteria in Eucalyptus species[J]. Journal of Fujian Agriculture and Forestry University (Natural Science), 2016, 45(5): 529-535. https://www.cnki.com.cn/Article/CJFDTOTAL-FJND201605010.htm
[11] 周健民, 沈仁芳. 土壤学大辞典[M]. 北京: 科学出版社, 2013.
Zhou J M, Shen R F. Dictionary of Soil Science[M]. Beijing: Science Press, 2013. (in Chinese)
[12] 张一鹤. 不同土地利用方式下黑土团聚体及有机碳组分特征[D]. 哈尔滨: 东北农业大学, 2018.
Zhang Y H. Characteristics of soil aggregates and organic carbon components in black soil under different land use[D]. Harbin: Northeast Agricultural University, 2018.
[13] 赵兰坡, 邹永久, 杨学明. 土壤学[M]. 北京: 北京农业大学出版社, 1992.
Zhao L P, Zou Y J, Yang X M. Soil science[M]. Beijing: Beijing Agricultural University Press, 1992. (in Chinese)
[14] 赵军, 葛翠萍, 商磊, 等. 农田黑土有机质和全量氮磷钾不同尺度空间变异分析[J]. 农业系统科学与综合研究, 2007, 23(3): 280-284. doi: 10.3969/j.issn.1001-0068.2007.03.007
Zhao J, Ge C P, Shang L, et al. Analysis for spatial heterogeneity of soil organic content and total nutrients in black soil crop area with different scales[J]. System Sciences and Comprehensive Studies in Agriculture, 2007, 23(3): 280-284. doi: 10.3969/j.issn.1001-0068.2007.03.007
[15] 杨忠芳, 余涛, 侯青叶, 等. 海南岛农田土壤Se的地球化学特征[J]. 现代地质, 2012, 26(5): 837-849. doi: 10.3969/j.issn.1000-8527.2012.05.001
Yang Z F, Yu T, Hou Q Y, et al. Geochemical Characteristics of soil selenium in farmland of Hainan island[J]. Geoscience, 2012, 26(5): 837-849. doi: 10.3969/j.issn.1000-8527.2012.05.001
[16] 张哲寰, 赵君, 戴慧敏, 等. 黑龙江省讷河市土壤-作物系统Se元素地球化学特征[J]. 地质与资源, 2020, 29(1): 38-43. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10147.shtml
Zhang Z H, Zhao J, Dai H M, et al. Geochemistry of selenium in soil-crop system of Nehe City, Heilongjiang Province[J]. Geology and Resources, 2020, 29(1): 38-43. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10147.shtml
[17] 廖启林, 任静华, 许伟伟, 等. 江苏宜溧富硒稻米产区地质地球化学背景[J]. 中国地质, 2016, 43(5): 1791-1802. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201605027.htm
Liao Q L, Ren J H, Xu W W, et al. Geological and geochemical background of Se-rich rice production in Yili area, Jiangsu Province[J]. Geology in China, 2016, 43(5): 1791-1802. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201605027.htm
[18] 宋泽峰, 蔡奎, 冯星, 等. 冀中南平原土壤碘地球化学特征研究[J]. 中国地质, 2014, 41(6): 2144-2151. doi: 10.3969/j.issn.1000-3657.2014.06.027
Song Z F, Cai K, Feng X, et al. Iodine geochemistry studies of soil in Central South Hebei Plain[J]. Geology in China, 2014, 41(6): 2144-2151. doi: 10.3969/j.issn.1000-3657.2014.06.027
-