QUALITY EVALUATION OF WUDALIANCHI VOLCANO MUD BASED ON FACTOR ANALYSIS AND MINIMUM DATA SET
-
摘要:
火山矿泥是一种于严苛条件下历经数百年形成的珍稀矿产资源,目前尚无判定及评价其质量的方法.本研究采用因子分析法及最小数据集理论构建火山矿泥质量评价方法,并对五大连池风景区内火山矿泥质量进行综合评价.研究结果表明:火山矿泥质量评价最小数据集包括V、Al、含水量、黏粒,将五大连池火山矿泥分为4个质量等级,其中I级火山矿泥的储量最大,约占总储量的一半.新期火山周边火山矿泥质量最好,西部火山周边的火山矿泥质量整体优于东部.
Abstract:Volcano mud is a rare kind of mineral resources formed in harsh conditions over hundreds of years, yet there is no method to judge and evaluate its quality currently. The factor analysis method and minimum data set theory are used to construct the quality evaluation method of volcanic mud, and to comprehensively evaluate the quality of volcanic mud in Wudalianchi Scenic Spot. The results show that the minimum data set for volcanic mud quality evaluation includes V, Al, water content and clay particle, and the Wudalianchi volcano mud can be divided into four quality grades, among which grade I has the largest reserves, accounting for half of the total reserves approximately. The quality of volcano mud around the modern volcano is the best, and the quality around the western volcanoes is better than that around the eastern.
-
Key words:
- volcano mud /
- quality evaluation /
- factor analysis /
- minimum data set /
- Wudalianchi Scenic Spot
-
-
图 1 采样点分布图(据文献[3]修改)
Figure 1.
表 1 火山矿泥指标描述性统计
Table 1. Descriptive statistics of volcano mud indexes
指标 样品数/个 平均值 极小值 极大值 标准差 变异系数/% Mn/10-6 75 308.173 106.530 740.150 158.342 51.381 Cu/10-6 75 17.141 7.970 31.290 4.484 26.159 Zn/10-6 75 45.164 23.740 66.070 7.272 16.102 Ba/10-6 75 156.385 100.450 306.350 32.438 20.743 Cr/10-6 75 30.836 13.330 47.460 7.136 23.143 Ti/10-6 75 688.888 25.410 1370.280 373.900 46.025 Ni/10-6 75 17.467 7.580 26.410 4.264 24.415 V/10-6 75 49.372 21.220 72.340 10.879 22.035 Sr/10-6 75 54.214 25.900 108.800 16.817 31.019 Sc/10-6 75 7.566 4.550 10.960 1.464 19.349 La/10-6 75 20.694 13.110 28.090 2.884 13.938 Li/10-6 75 15.533 2.020 30.820 6.135 39.494 Fe/10-3 75 23.645 12.860 38.940 5.157 21.811 Al/10-3 75 29.834 13.090 47.640 7.368 24.696 Kg/10-3 75 4.179 1.640 8.150 1.716 41.056 Na/10-3 75 592.718 440.360 853.850 108.136 18.244 Ca/10-3 75 4.031 2.250 7.270 0.971 24.083 Mg/10-3 75 4.451 2.050 6.960 1.126 25.305 TOC/% 75 1.449 0.390 3.780 0.718 49.548 pH 75 6.515 6.000 7.100 0.197 3.023 含水量/% 75 30.851 20.500 48.200 6.606 21.413 石英/% 75 27.365 18.200 34.200 3.036 11.096 黏粒/% 75 5.296 1.620 10.250 1.745 32.96 粉粒/% 75 42.454 22.680 66.720 10.074 23.73 砂粒% 75 52.238 23.040 75.670 11.429 21.88 表 2 火山矿泥指标载荷矩阵、公因子方差和晕燥则皂值
Table 2. Loading matrix, common factor variance and Norm values of volcano mud indexes
指标 PC-1 PC-2 PC-3 PC-4 PC-5 PC-6 分组 公因子方差 Norm Mn 0.887 0.018 0.183 0.005 0.209 -0.096 1 0.635 1.354 Cu 0.878 0.07 -0.027 0.167 -0.221 0.107 1 0.810 1.755 Zn 0.876 -0.054 0.318 0.109 0.051 -0.137 1 0.846 1.204 Ba 0.875 0.167 -0.147 0.148 -0.182 -0.055 1 0.685 1.749 Cr 0.822 0.145 -0.264 0.145 -0.203 0.180 1 0.772 2.689 Ti 0.808 0.059 -0.08 -0.161 0.173 -0.181 1 0.771 2.420 Ni 0.807 0.201 0.16 -0.233 0.202 0.006 1 0.755 2.380 V 0.793 -0.113 0.023 -0.191 -0.113 0.059 1 0.576 2.820 Sr 0.759 0.072 0.424 0.194 -0.024 -0.021 1 0.721 1.629 Sc 0.750 -0.046 0.014 0.082 -0.125 0.022 1 0.612 2.504 La -0.623 0.471 0.188 0.355 -0.185 -0.201 0.866 1.881 Li 0.615 -0.456 -0.219 -0.333 0.176 0.182 1 0.752 2.469 Fe 0.543 -0.46 0.020 -0.413 0.192 0.240 1 0.861 2.272 Al 0.137 0.794 0.268 -0.005 0.177 0.016 2 0.873 2.683 K 0.227 0.744 0.013 0.242 0.139 0.194 2 0.711 2.548 Na -0.028 0.624 0.149 -0.449 -0.143 -0.008 2 0.587 1.542 Ca 0.363 0.45 -0.216 0.335 -0.288 0.190 0.746 1.632 Mg 0.122 0.135 0.801 0.085 0.126 0.112 3 0.812 2.677 TOC 0.458 0.253 0.620 0.006 -0.348 -0.133 3 0.753 0.986 pH 0.527 0.294 0.593 -0.028 -0.078 -0.148 3 0.873 1.025 含水量 -0.029 0.073 0.070 0.750 0.039 -0.030 4 0.800 1.164 石英 0.485 0.166 0.364 0.519 0.259 0.193 4 0.696 0.144 黏粒 -0.088 0.053 0.021 0.088 0.815 -0.045 5 0.768 1.966 粉粒 0.041 0.031 -0.242 -0.153 0.369 -0.742 0.798 2.136 砂粒 0.161 0.232 -0.254 -0.212 0.252 0.709 6 0.905 2.176 主成分特征值 9.103 3.652 1.867 1.657 1.437 1.267 主成分贡献率/% 36.411 14.607 7.466 6.629 5.750 5.068 主成分累积贡献率/% 36.411 51.018 58.484 65.113 70.863 75.931 表 3 火山矿泥指标相关性分析
Table 3. Correlation analysis of volcano mud indexes
Mn 砂粒 Cu 粉粒 黏粒 石英 含水量 pH TOC Ca Mg K Na Al Fe Zn Li Sc La Sr V Ni Ti Cr Ba Mn 1 砂粒 0.191 1 Cu -0.042 -0.042 1 粉粒 -0.196 -0.995** 0.036 1 黏粒 -0.124 -0.817** 0.059 0.755** 1 石英 -0.045 -0.096 -0.127 0.118 -0.030 1 含水量 0.150 -0.254* 0.153 0.259* 0.157 -0.229* 1 pH -0.075 0.023 0.100 -0.027 -0.009 0.175 0.070 1 TOC -0.097 0.212 0.396** -0.190 -0.291* -0.091 -0.115 0.011 1 Ca 0.234* 0.150 0.334** -0.148 -0.137 -0.086 0.191 0.116 0.218 1 Mg -0.009 -0.411** 0.464** 0.411** 0.329** -0.136 0.137 -0.180 -0.014 0.291* 1 K -0.006 -0.424** 0.421** 0.433** 0.286* -0.094 0.292* -0.183 0.021 0.281* 0.857** 1 Na 0.039 0.035 0.282* -0.022 -0.100 -0.149 0.110 -0.186 0.097 0.512** 0.452** 0.531** 1 Al 0.006 -0.356** 0.404** 0.360** 0.267* -0.033 0.100 -0.132 0.056 0.292* 0.860** 0.868** 0.428** 1 Fe -0.034 -0.396** 0.295* 0.380** 0.411** -0.079 0.045 -0.085 -0.029 0.165 0.786** 0.568** 0.252* 0.705** 1 Zn 0.061 0.142 0.456** -0.169 0.028 -0.126 -0.083 0.121 -0.048 0.204 0.170 -0.031 0.096 -0.002 0.143 1 Li 0.095 -0.494** 0.334** 0.486** 0.447** 0.202 0.127 0.014 -0.103 0.090 0.615** 0.565** 0.202 0.662** 0.519** 0.063 1 Sc 0.119 -0.401** 0.444** 0.375** 0.471** 0.036 0.247* 0.081 -0.245* 0.260* 0.606** 0.598** 0.186 0.713** 0.520** 0.256* 0.742** 1 La 0.186 -0.093 0.445** 0.091 0.079 0.012 -0.075 -0.075 0.049 0.334** 0.433** 0.335** 0.195 0.468** 0.279* 0.497** 0.317** 0.584** 1 Sr 0.421** 0.211 0.310** -0.209 -0.184 0.033 0.159 0.081 0.182 0.683** 0.085 0.074 0.261* 0.152 0.095 0.301** 0.165 0.304** 0.426** 1 V 0.031 -0.476** 0.556** 0.458** 0.488** 0.089 0.095 0.083 -0.009 0.223 0.697** 0.584** 0.203 0.692** 0.630** 0.205 0.761** 0.817** 0.535** 0.172 1 Ni 0.059 -0.321** 0.606** 0.311** 0.309** -0.047 -0.012 -0.115 0.183 0.303** 0.707** 0.511** 0.303** 0.559** 0.587** 0.426** 0.563** 0.541** 0.616** 0.297** 0.772** 1 Ti -0.040 -0.568** 0.243* 0.560** 0.492** -0.047 0.194 -0.142 -0.131 0.029 0.619** 0.639** 0.216 0.630** 0.488** 0.028 0.629** 0.640** 0.464** 0.002 0.678** 0.530** 1 Cr -0.023 -0.408** 0.553** 0.397** 0.393** 0.001 -0.013 0.007 0.090 0.120 0.741** 0.583** 0.192 0.730** 0.654** 0.300** 0.713** 0.759** 0.625** 0.133 0.911** 0.830** 0.677** 1 Ba 0.274* -0.031 0.327** 0.027 0.045 -0.135 -0.178 -0.233* 0.160 0.237* 0.429** 0.314** 0.205 0.428** 0.352** 0.453** 0.251* 0.397** 0.735** 0.421** 0.431** 0.618** 0.405** 0.568** 1 注:**和*分别为在1%和5%水平下显著相关. 表 4 火山矿泥指标权重
Table 4. Weights of volcano mud indexes
要素类型 V Al 含水量 黏粒 公因子方差 0.831 0.768 0.905 0.590 权重 0.269 0.248 0.293 0.191 表 5 五大连池火山矿泥质量指数平均值、等级及储量
Table 5. Average quality index, grade and reserves of Wudalianchi volcano mud
火山名称 QI 等级 储量/104 m3 药泉山 0.868 Ⅰ 10.55 老黑山 0.946 Ⅰ 4.73 火烧山 0.988 Ⅰ 16.48 东龙门山 0.249 Ⅳ 5.12 西龙门山 0.707 Ⅱ 3.54 东焦德布山 0.662 Ⅱ 2.68 西焦德布山 0.651 Ⅱ 2.99 南格拉球山 0.484 Ⅲ 1.54 北格拉球山 0.522 Ⅲ 2.03 尾山 0.733 Ⅱ 4.58 莫拉布山 0.332 Ⅲ 9.67 卧虎山 - - - 笔架山 - - - 小孤山 - - - -
[1] 韩春兰, 顾欣燕, 刘杨杨, 等. 长白山山脉火山喷出物发育土壤的特性及系统分类研究[J]. 土壤学报, 2013, 50(6): 1061-1070. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201306001.htm
Han C L, Gu X Y, Liu Y Y, et al. Properties and taxonomy of soils developed from volcano ejects in Changbai Mountains[J]. Acta Pedologica Sinica, 2013, 50(6): 1061-1070. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201306001.htm
[2] 高思萌. 五大连池火山矿泥的微生物多样性及其环境调控机理研究[D]. 沈阳: 沈阳大学, 2019.
Gao S M. Microbial diversity of Wudalianchi volcanic sludge and its correlation with environmental factors[D]. Shenyang: Shenyang University, 2019.
[3] 毛翔, 李江海, 高危言, 等. 黑龙江五大连池火山群火山分布与断裂关系新认识[J]. 高校地质学报, 2010, 16(2): 226-235. doi: 10.3969/j.issn.1006-7493.2010.02.010
Mao X, Li J H, Gao W Y, et al. Vent distribution of Wudalianchi volcanoes Heilongjiang Province, China and its relation to faults[J]. Geological Journal of China Universities, 2010, 16(2): 226-235. doi: 10.3969/j.issn.1006-7493.2010.02.010
[4] 王希英, 谢振华, 方振兴. 五大连池火山矿泥在化妆品中的应用研究[J]. 日用化学品科学, 2014, 37(8): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-RYHX201408008.htm
Wang X Y, Xie Z H, Fang Z X. Application of Wudalianchi volcanic mineral mud in cosmetics[J]. Detergent & Cosmetics, 2014, 37(8): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-RYHX201408008.htm
[5] Kamarudin N H N, Setiabudi H D, Jalil A A, et al. Utilization of Lapindo volcanic mud for enhanced sono-sorption removal of acid orange 52[J]. Bulletin of Chemical Reaction Engineering & Catalysis, 2019, 14(1): 189-195. http://www.researchgate.net/publication/330899646_Utilization_of_Lapindo_Volcanic_Mud_for_Enhanced_Sono-sorption_Removal_of_Acid_Orange_52/download
[6] Negis H, Seker C. Estimation of soil quality of under long term sugar beet-wheat cropping system by factor analysis[J]. Communications in Soil Science and Plant Analysis, 2020, 51(4): 440-455. doi: 10.1080/00103624.2020.1718689
[7] 张贞, 魏朝富, 高明, 等. 土壤质量评价方法进展[J]. 土壤通报, 2006, 37(5): 999-1006. doi: 10.3321/j.issn:0564-3945.2006.05.038
Zhang Z, Wei C F, Gao M, et al. Assessment methods for soil quality: A review[J]. Chinese Journal of Soil Science, 2006, 37(5): 999-1006. doi: 10.3321/j.issn:0564-3945.2006.05.038
[8] 黄勇, 杨忠芳. 土壤质量评价国外研究进展[J]. 地质通报, 2009, 28(1): 130-136. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200901017.htm
Huang Y, Yang Z F. Recent research progress of overseas soil quality evaluation[J]. Geological Bulletin of China, 2009, 28(1): 130-136. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200901017.htm
[9] 杨淇钧, 吴克宁, 冯喆, 等. 大空间尺度土壤质量评价研究进展与启示[J]. 土壤学报, 2020, 57(3): 565-578. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB202003005.htm
Yang Q J, Wu K N, Feng Z, et al. Soil quality assessment on large spatial scales: advancement and revelation[J]. Acta Pedologica Sinica, 2020, 57(3): 565-578. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB202003005.htm
[10] Aroh J E K, Roy M, Wada A C. Soil quality evaluation and classification system: criteria for determining fertility classes for agricultural production[J]. Scholedge International Journal of Multidisciplinary & Allied Studies, 2020, 6(12): 137-155.
[11] 刘江, 吕涛, 张立欣, 等. 基于主成分分析的不同种植年限甘草地土壤质量评价[J]. 草业学报, 2020, 29(6): 162-171. https://www.cnki.com.cn/Article/CJFDTOTAL-CYXB202006015.htm
Liu J, Lv T, Zhang L X, et al. Soil quality assessment by principal component analysis in Glycyrrhiza uralensis stands of differing ages[J]. Acta Prataculturae Sinica, 2020, 29(6): 162-171. https://www.cnki.com.cn/Article/CJFDTOTAL-CYXB202006015.htm
[12] 姜龙群, 侯贵廷, 黄淇, 等. 基于因子分析和最小数据集的土壤养分评价——以房山平原区为例[J]. 土壤通报, 2018, 49(5): 1034-1040. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201805004.htm
Jiang L Q, Hou G T, Huang Q, et al. Evaluation of soil fertility quality with a minimum data set and factor analysis in the Fangshan plain of Beijing[J]. Chinese Journal of Soil Science, 2018, 49(5): 1034-1040. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201805004.htm
[13] 张连金, 赖光辉, 孔颖, 等. 基于因子分析法的北京九龙山土壤质量评价[J]. 西北林学院学报, 2016, 31(3): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-XBLX201603002.htm
Zhang L J, Lai G H, Kong Y, et al. Evaluation of soil quality in Beijing Jiulong Mountain based on factor analysis method[J]. Journal of Northwest Forestry University, 2016, 31(3): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-XBLX201603002.htm
[14] 吴春生, 刘高焕, 黄翀, 等. 基于MDS和模糊逻辑的黄河三角洲土壤质量评估[J]. 资源科学, 2016, 38(7): 1275-1286. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201607009.htm
Wu C S, Liu G H, Huang C, et al. Soil quality assessment of the Yellow River Delta based on MDS and fuzzy logic model[J]. Resources Science, 2016, 38(7): 1275-1286. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201607009.htm
[15] 李鹏飞, 张兴昌, 郝明德, 等. 基于基于最小数据集的黄土高原矿区复垦土壤质量评价[J]. 农业工程学报, 2019, 35(16): 265-273. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201916030.htm
Li P F, Zhang X C, Hao M D, et al. Soil quality evaluation for reclamation of mining area on Loess Plateau based on minimum data set[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(16): 265-273. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201916030.htm
[16] 娄义宝, 史东梅, 蒋光毅, 等. 基于最小数据集的紫色丘陵区坡耕地耕层土壤质量评价[J]. 中国水土保持科学, 2019, 17(5): 75-85. https://www.cnki.com.cn/Article/CJFDTOTAL-STBC201905009.htm
Lou Y B, Shi D M, Jiang G Y, et al. Evaluation of soil quality in the cultivated-layer of sloping farmland in purple hilly area based on minimum data set[J]. Science of Soil and Water Conservation, 2019, 17(5): 75-85. https://www.cnki.com.cn/Article/CJFDTOTAL-STBC201905009.htm
[17] 李桂林, 陈杰, 檀满枝, 等. 基于土地利用变化建立土壤质量评价最小数据集[J]. 土壤学报, 2008, 45(1): 16-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB200801004.htm
Li G L, Chen J, Tan M Z, et al. Establishment of a minimum dataset for soil quality assessment based on land use change[J]. Acta Pedologica Sinica, 2008, 45(1): 16-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB200801004.htm
[18] Raiesi F. A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions[J]. Ecological Indicators, 2017, 75: 307-320. http://www.sciencedirect.com/science/article/pii/S1470160X16307543
[19] 王希英, 方振兴, 吴婧, 等. 五大连池火山矿泥清洁泥膜的制备工艺[J]. 黑龙江科学, 2019, 10(24): 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HELJ201924012.htm
Wang X Y, Fang Z X, Wu J, et al. The preparation technology of clean mud film of Wudalianchi mud[J]. Heilongjiang Science, 2019, 10(24): 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HELJ201924012.htm
[20] 方振兴, 王希英, 吴婧, 等. 五大连池矿泉接骨木眼霜的制备工艺研究[J]. 香料香精化妆品, 2019(5): 52-54. https://www.cnki.com.cn/Article/CJFDTOTAL-XLXJ201905012.htm
Fang Z X, Wang X Y, Wu J, et al. Study on preparation of Wudalianchi mineral elderberry eye cream[J]. Flavour Fragrance Cosmetics, 2019(5): 52-54. https://www.cnki.com.cn/Article/CJFDTOTAL-XLXJ201905012.htm
[21] 尤传誉, 冶雪艳, 张海燕, 等. 五大连池地区矿泥分布特征及储量评价[J]. 地质与勘探, 2015, 51(1): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201501007.htm
You C Y, Ye X Y, Zhang H Y, et al. Distribution characteristic and reserve evaluation of the peloid in the Wudalianchi area, Heilongjiang Province[J]. Geology and Exploration, 2015, 51(1): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201501007.htm
-