APPLICATION OF COMPREHENSIVE GEOPHYSICAL PROSPECTING IN DEEP BRINE POTASSIUM DEPOSIT EXPLORATION IN SALT LAKE OF QAIDAM BASIN
-
摘要:
青海省柴达木盆地是著名的钾肥生产基地,也是中国盐类矿产的主要产地.以往盐类矿产勘查主要针对第四纪浅部盐类矿产,对第四纪深部及古近纪-新近纪卤水钾矿工作程度较低,资源勘查情况不明.由于盐湖区浅部卤水矿化度较高,会对电阻率类方法造成严重的低阻屏蔽效应,从而影响其探测深度,对于应用地球物理方法造成了极大的局限性.为查明该区深部卤水钾矿资源情况,采用对低阻异常敏感、信号强度大、纵横向分辨率高的瞬变电磁法(TEM),并结合勘探深度较大的大地电磁测深法(MT)对深层卤水钾矿进行探测.勘查结果识别出了相对低阻异常区,经后期钻孔验证,显示探测结果较为可靠,表明TEM、MT两种物探方法应用于盐湖区深层卤水钾矿探测是有效的,揭示了TEM、MT综合物探方法在盐湖区探测深层钾盐资源的良好应用前景.
Abstract:Qaidam Basin in Qinghai Province is a well-known potash fertilizer production base as well as major producer of salt minerals in China. The previous exploration mainly focused on the Quaternary shallow salt minerals, while the work on the Quaternary deep part and Paleogene-Neogene brine potash deposit was not enough, and the situation of resources is still unknown. Due to the high salinity of shallow brine in salt lake area, the resistivity method will have a serious low resistance shielding effect, thus affecting its detection depth and causing great limitations for application of geophysical methods. To find out the deep brine potassium mineral resources in the area, the transient electromagnetic method (TEM) with high sensitivity to low resistance, strong signal intensity and high vertical-lateral resolution, combined with the magnetotelluric sounding (MT) with large exploration depth, is used to explore the deep brine potassium deposit. The exploration results identify the relatively low resistivity anomaly area, and the detection results are reliable through later drilling verification, indicating that the geophysical methods of TEM and MT are effective in exploration of deep brine potassium deposit in salt lake areas, which reveals good prospects of the two methods in exploration of deep potassium resources in salt lake areas.
-
Key words:
- salt lake /
- deep brine /
- TEM /
- MT /
- Qaidam Basin /
- Qinghai Province
-
-
表 1 马海地区物性参数统计表
Table 1. Physical parameters of Mahai area
地层 岩性 电阻率/Ωm Q 石盐粉砂 0.7~1 黏土粉砂(高矿化度) 0.65~1 黏土粉砂(低矿化度) 1.1~1.5 含石膏的粉砂黏土(高矿化度) 0.7~0.9 含石膏的粉砂黏土(低矿化度) 1.2~1.5 粉砂(高矿化度) 0.5~0.9 粉砂(低矿化度) 1~1.5 粉细砂(高矿化度) 0.4~0.9 粉细砂(低矿化度) 1.1~1.5 细砂(高矿化度) 0.4~0.8 细砂(低矿化度) 1.1~1.6 粗砂(高矿化度) 0.4~0.7 粗砂(低矿化度) 1.2~1.6 砾砂(高矿化度) 0.3~0.6 砾砂(低矿化度) 1.2~1.7 含粉砂黏土(低矿化度) 1~1.3 N 砂质泥岩 3~30 表 2 马ZK4010钻孔抽水试验数据
Table 2. Pumping test data of borehole M-ZK4010
试段编号 降深值/m 涌水量/(m3/d) 单位涌水量/(m3/dm) KCl/% 矿化度/(g/L) 密度/(g/cm3) 第Ⅰ试段(170~812 m) S1=57.92 Q1=1538.64 25.59 0.51 284.31 1.179 S2=31.05 Q2=1042.08 第Ⅱ试段(812~1400 m) S1=62.51 Q1=1135.92 19.98 0.50 280.8 1.180 S2=37.23 Q2=737.04 混抽 S1=63.58 Q1=2148.34 31.23 0.49 279.5 1.183 S2=49.92 Q2=1431.04 -
[1] 李秋生, 高原, 王绪本, 等. 青藏高原地球物理与大陆动力学研究的新进展[J]. 地球物理学报, 2020, 63(3): 789-801. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202003002.htm
Li Q S, Gao Y, Wang X B, et al. New research progress in geophysics and continental dynamics of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 2020, 63(3): 789-801. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202003002.htm
[2] 曾友强, 李貅, 智庆全. 大定源瞬变电磁水平分量解释研究[C]//2014年中国地球科学联合学术年会论文集. 2014: 1477.
Zeng Y Q, Li X, Zhi Q Q. Study on horizontal component interpretation of large-loop TEM[C]//Proceedings of China Association of Geosciences Annual Conference. 2014: 1477. (in Chinese)
[3] 欧阳涛, 底青云, 薛国强, 等. 利用多通道瞬变电磁法识别深部矿体——以内蒙兴安盟铅锌银矿为例[J]. 地球物理学报, 2019, 62(5): 1981-1990. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201905032.htm
Ouyang T, Di Q Y, Xue G Q, et al. Identifying deep ore bodies using the multi-channel transient electromagnetic method (MTEM): an example of a lead-zinc-silver mine in Inner Mongolia[J]. Chinese Journal of Geophysics, 2019, 62(5): 1981-1990. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201905032.htm
[4] 杨文采, 金胜, 张罗磊, 等. 青藏高原岩石圈三维电性结构[J]. 地球物理学报, 2020, 63(3): 817-827. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202003005.htm
Yang W C, Jin S, Zhang L L, et al. The three-dimensional resistivity structures of the lithosphere beneath the Qinghai-Tibet Plateau[J]. Chinese Journal of Geophysics, 2020, 63(3): 817-827. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202003005.htm
[5] 王刚, 方慧, 仇根根, 等. 安庆-贵池矿集区及邻区深部电性结构研究[J]. 中国地质, 2019, 46(4): 795-806. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201904011.htm
Wang G, Fang H, Qiu G G, et al. The deep electrical structure across Anqing-Guichi ore concentration area[J]. Geology in China, 2019, 46(4): 795-806. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201904011.htm
[6] 蒋丽丽, 李祎昕. 综合物探方法勘查在沈阳新城子盆地地热勘查中的应用效果[J]. 地质与资源, 2016, 25(6): 575-579. doi: 10.3969/j.issn.1671-1947.2016.06.011 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8691.shtml
Jiang L L, Li Y X. Application of the integrated geophysical methods in the geothermal exploration in Xinchengzi basin, Liaoning Province[J]. Geology and Resources, 2016, 25(6): 575-579. doi: 10.3969/j.issn.1671-1947.2016.06.011 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8691.shtml
[7] 底青云, 朱日祥, 薛国强, 等. 我国深地资源电磁探测新技术研究进展[J]. 地球物理学报, 2019, 62(6): 2128-2138. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201906012.htm
Di Q Y, Zhu R X, Xue G Q, et al. New development of the electromagnetic (EM) methods for deep exploration[J]. Chinese Journal of Geophysics, 2019, 62(6): 2128-2138. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201906012.htm
[8] 高敬语, 谭嘉言, 朱占升, 等. 音频大地电磁法在地下水质评价中的应用[J]. 物探与化探, 2013, 37(5): 895-898. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201305026.htm
Gao J Y, Tan J Y, Zhu Z S, et al. The application of the audio magnetotelluric method to the assessment of underground water quality[J]. Geophysical and Geochemical Exploration, 2013, 37(5): 895-898. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201305026.htm
[9] 戚志鹏, 李貅, 朱宏伟, 等. 大定源装置下瞬变电磁法视电阻率定义[J]. 地球物理学进展, 2011, 26(4): 1350-1358. doi: 10.3969/j.issn.1004-2903.2011.04.028
Qi Z P, Li X, Zhu H W, et al. Definition of apparent resistivity for non-center vertical component of large-loop TEM configuration[J]. Progress in Geophysics, 2011, 26(4): 1350-1358. doi: 10.3969/j.issn.1004-2903.2011.04.028
[10] 张成范, 翁爱华, 孙世栋, 等. 计算矩形大定源回线瞬变电磁测深全区视电阻率[J]. 吉林大学学报(地球科学版), 2009, 39(4): 755-758. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904023.htm
Zhang C F, Weng A H, Sun S D, et al. Computation of whole-time apparent reisistivity of large rectangular loop[J]. Journal of Jilin University (Earth Science Edition), 2009, 39(4): 755-758. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904023.htm
[11] 薛国强, 李貅, 郭文波, 等. 大回线源瞬变电磁场响应特性[J]. 石油地球物理勘探, 2007, 42(5): 586-590. doi: 10.3321/j.issn:1000-7210.2007.05.018
Xue G Q, Li X, Guo W B, et al. Characters of response of large-loop transient electro-magnetic field[J]. Oil Geophysical Prospecting, 2007, 42(5): 586-590. doi: 10.3321/j.issn:1000-7210.2007.05.018
[12] 薛国强, 闫述, 周楠楠. 偶极子假设引起的大回线源瞬变电磁响应偏差分析[J]. 地球物理学报, 2011, 54(9): 2389-2396. doi: 10.3969/j.issn.0001-5733.2011.09.022
Xue G Q, Yan S, Zhou N N. Theoretical study on the errors caused by dipole hypothesis of large-loop TEM response[J]. Chinese Journal of Geophysics, 2011, 54(9): 2389-2396. doi: 10.3969/j.issn.0001-5733.2011.09.022
[13] 陈宣华, 邵兆刚, 熊小松, 等. 祁连造山带断裂构造体系、深部结构与构造演化[J]. 中国地质, 2019, 46(5): 995-1020. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201905005.htm
Chen X H, Shao Z G, Xiong X S, et al. Fault system, deep structure and tectonic evolution of the Qilian Orogenic Belt, Northwest China[J]. Geology in China, 2019, 46(5): 995-1020. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201905005.htm
[14] 宋洪伟, 夏凡, 尚铭森. MT法在河北献县地区地热勘查中的应用[J]. 地质与资源, 2018, 27(3): 284-287. doi: 10.3969/j.issn.1671-1947.2018.03.012
Song H W, Xia F, Shang M S. Application of MT method in geothermal prospecting in Xianxian area, Hebei Province[J]. Geology and Resources, 2018, 27(3): 284-287. doi: 10.3969/j.issn.1671-1947.2018.03.012
[15] 罗卫锋, 胡志方, 李桂林, 等. 基于大地电磁技术测定的准噶尔盆地乌伦古坳陷至乌伦古北隆起带石炭系地层及其油气前景分析[J]. 中国地质. https://kns.cnki.net/kcms/detail/11.1167.p.20200325.1034.002.html, 2020-03-26.
Luo W F, Hu Z F, Li G L, et al. Carboniferous strata and their oil and gas prospects from Wulungu depression to the north uplift in the Junggar Basin based on magnetotelluric technology[J]. Geology in China. https://kns.cnki.net/kcms/detail/11.1167.p.20200325.1034.002.html, 2020-03-26.
[16] 张帆, 孙中任, 尤宏亮, 等. 辽西金羊盆地大地电磁测深参考道处理效果研究[J]. 地质与资源, 2017, 26(2): 176-183. doi: 10.3969/j.issn.1671-1947.2017.02.013 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8524.shtml
Zhang F, Sun Z R, You H L, et al. Study on magnetotellurics with magnetic reference method in Jinyang Basin, Western Liaoning[J]. Geology and Resources, 2017, 26(2): 176-183. doi: 10.3969/j.issn.1671-1947.2017.02.013 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8524.shtml
[17] 时彬, 郇恒飞, 高铁, 等. 大地电磁静态效应模拟研究[J]. 地质与资源, 2015, 24(4): 373-377. doi: 10.3969/j.issn.1671-1947.2015.04.015 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8759.shtml
Shi B, Huan H F, Gao T, et al. Study on the simulation of magnetotelluric static effect[J]. Geology and Resources, 2015, 24(4): 373-377. doi: 10.3969/j.issn.1671-1947.2015.04.015 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8759.shtml
[18] 李树军, 孙钢, 张国, 等. 辽东地区含石墨地层条件下的物探找矿效果——以钓鱼台金银矿为例[J]. 地质与资源, 2017, 26(3): 310-316. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8545.shtml
Li S J, Sun G, Zhang G, et al. Geophysical prospecting effect in the graphite-bearing strata in Eastern Liaoning: a case study of the Diaoyutai gold-silver deposit[J]. Geology and Resources, 2017, 26(3): 310-316. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8545.shtml
[19] 严加永, 吕庆田, 罗凡, 等. 钦杭何在?来自综合地球物理探测的认识[J]. 中国地质, 2019, 46(4): 690-703. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201904003.htm
Yan J Y, Lü Q T, Luo F, et al. Where is Qinzhou-Hangzhou juncture belt? Evidence from integrated geophysical exploration[J]. Geology in China, 2019, 46(4): 690-703. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201904003.htm
[20] 叶涛, 陈小斌, 严良俊. 大地电磁资料精细处理和二维反演解释技术研究(三)——构建二维反演初始模型的印模法[J]. 地球物理学报, 2013, 56(10): 3596-3606. doi: 10.6038/cjg20131034
Ye T, Chen X B, Yan L J. Refined techniques for data processing and two-dimensional inversion in magnetotelluric (Ⅲ): Using the impressing method to construct starting model of 2D magnetotelluric inversion[J]. Chinese Journal of Geophysics, 2013, 56(10): 3596-3606. doi: 10.6038/cjg20131034
-