GEOCHEMISTRY AND FORMATION ENVIRONMENT OF THE LATE TRIASSIC-MIDDLE JURASSIC SILICEOUS ROCKS IN EASTERN HEILONGJIANG PROVINCE
-
摘要:
黑龙江省东部那丹哈达增生杂岩主要由晚三叠世-中侏罗世含放射虫硅质岩组成,并夹有镁铁-超镁铁质杂岩和晚古生代浅海沉积岩.对黑龙江省东部石场、勤得利和胜利农场地区硅质岩分析显示,样品Al2O3、TiO2、CaO、Al2O3/(Al2O3+TFe2O3)及ΣREE整体上偏低,具有较高的SiO2含量,为纯硅质岩.结合Al-Fe-Mn三角图和K2O/Na2O值,表明该地区硅质岩的形成过程与海底热液作用无关.元素判别图解及地球化学特征揭示,黑龙江东部三个地区的硅质岩形成于大陆坡及边缘海环境.
Abstract:The Nadanhada accretionary complex in eastern Heilongjiang Province is mainly composed of the Late Triassic-Middle Jurassic radiolarian siliceous rocks intercalated with the mafic-ultramafic complex and Late Paleozoic shallow sea sedimentary rocks. The analysis results of siliceous rocks from Shichang, Qindeli and Shengli Farm areas in eastern Heilongjiang Province show that the samples, characterized by generally low Al2O3, TiO2, CaO and ΣREE contents and low Al2O3/(Al2O3+TFe2O3) ratio and high SiO2 content, are pure siliceous rocks. Combined with the Al-Fe-Mn triangle diagram and K2O/Na2O ratio, it is indicated that the formation of siliceous rocks has nothing to do with seafloor hydrothermal process. The element discrimination diagram and geochemical characteristics reveal the siliceous rocks in the above three areas were formed in continental slope and marginal sea environment.
-
-
图 3 黑龙江省东部硅质岩北美页岩标准化稀土元素配分模式图(北美页岩标准化值据文献[32])
Figure 3.
表 1 黑龙江省东部硅质岩样品地球化学分析结果
Table 1. Contents of major, trace and rare earth elements in the siliceous rocks in eastern Heilongjiang Province
样品 石场地区黄白色硅质岩 勤得利地区灰黑色硅质岩 胜利农场灰白色硅质岩 胜利农场紫红色硅质岩 Y01 Y02 Y03 Y04 平均值 Y05 Y06 Y07 Y08 平均值 Y09 Y10 Y11 Y12 平均值 Y13 Y14 Y15 Y16 平均值 SiO2 95.24 94.39 94.87 95.95 95.11 95.42 96.08 95.51 96.72 95.93 95.71 96.48 95.52 94.76 95.62 95.08 94.97 94.82 95.77 95.16 Al2O3 2.07 1.76 1.62 1.40 1.71 1.92 1.70 1.91 1.42 1.74 1.66 1.83 2.25 2.17 1.98 1.68 1.72 1.97 1.96 1.83 TFe2O3 0.79 1.62 1.14 0.95 1.13 1.07 0.67 0.72 0.64 0.78 0.84 0.57 0.47 0.61 0.62 0.92 0.94 0.97 0.93 0.94 MgO 0.18 0.14 0.18 0.09 0.15 0.21 0.18 0.24 0.10 0.18 0.12 0.15 0.14 0.16 0.14 0.19 0.20 0.24 0.23 0.22 CaO 0.03 0.02 0.03 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.03 0.02 0.01 0.01 0.02 0.01 * 0.01 0.01 0.01 Na2O 0.05 0.05 0.04 0.03 0.04 0.05 0.09 0.12 0.28 0.14 0.02 0.02 0.01 0.01 0.02 * 0.01 0.01 0.02 0.01 K2O 0.57 0.44 0.42 0.38 0.45 0.59 0.47 0.56 0.27 0.47 0.37 0.42 0.40 0.42 0.40 0.62 0.62 0.64 0.63 0.63 TiO2 0.07 0.06 0.05 0.05 0.06 0.08 0.06 0.08 0.05 0.07 0.09 0.08 0.10 0.09 0.09 0.07 0.07 0.08 0.08 0.08 P2O5 0.02 0.02 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.06 0.02 0.05 0.05 0.05 0.02 0.02 0.03 0.03 0.03 MnO 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 * * 0.01 * * 0.01 0.01 0.01 Total 99.03 98.51 98.39 98.88 98.70 99.37 99.29 99.21 99.52 99.35 98.91 99.61 98.95 98.28 98.94 98.59 98.55 98.78 99.67 98.90 MnO/TiO2 0.14 0.17 0.40 0.20 0.23 0.13 0.17 0.25 0.20 0.19 0.11 0.13 - - 0.12 - - 0.13 0.13 0.13 K2O/Na2O 11.40 8.80 10.50 12.67 10.84 11.80 5.22 4.67 0.96 5.66 18.50 21.00 40.00 42.00 30.38 - 62.00 64.00 31.50 52.50 TFe2O3/TiO2 11.29 27.00 22.80 19.00 20.02 13.38 11.17 9.00 12.80 11.59 9.33 7.13 4.70 6.78 6.99 13.14 13.43 12.13 11.63 12.58 Al/(Al+Fe) 0.72 0.52 0.59 0.60 0.61 0.64 0.72 0.73 0.69 0.70 0.66 0.76 0.83 0.78 0.76 0.65 0.65 0.67 0.68 0.66 La 5.20 5.10 4.30 3.80 4.60 6.50 4.30 8.50 4.20 5.88 9.70 8.90 7.40 7.50 8.38 6.60 6.80 9.70 8.80 7.98 Ce 12.00 12.00 10.10 8.40 10.63 18.60 16.40 21.20 15.60 17.95 14.80 11.40 12.00 11.60 12.45 9.60 10.40 14.60 13.30 11.98 Pr 1.22 1.14 1.01 0.96 1.08 1.34 1.01 2.37 0.96 1.42 2.51 1.94 2.18 2.28 2.23 1.73 1.77 2.74 2.53 2.19 Nd 4.50 4.40 3.80 3.50 4.05 5.00 3.80 9.30 3.40 5.38 10.50 7.40 9.90 10.50 9.58 6.90 7.40 11.80 10.80 9.23 Sm 0.98 1.00 0.82 0.86 0.92 1.14 0.87 1.87 0.67 1.14 2.70 1.59 2.62 2.71 2.41 1.60 1.78 2.81 2.64 2.21 Eu 0.24 0.22 0.14 0.18 0.20 0.24 0.15 0.40 0.16 0.24 0.62 0.30 0.61 0.66 0.55 0.35 0.41 0.62 0.54 0.48 Gd 1.00 0.91 0.75 0.84 0.88 1.01 0.78 1.77 0.60 1.04 2.80 1.54 3.05 3.12 2.63 1.95 1.95 2.72 2.47 2.27 Tb 0.13 0.11 0.10 0.11 0.11 0.14 0.12 0.25 0.08 0.15 0.42 0.24 0.40 0.43 0.37 0.31 0.30 0.35 0.33 0.32 Dy 0.79 0.64 0.62 0.66 0.68 0.80 0.72 1.61 0.50 0.91 2.46 1.59 2.36 2.39 2.20 1.97 1.89 2.02 1.86 1.94 Ho 0.16 0.13 0.12 0.12 0.13 0.16 0.16 0.34 0.10 0.19 0.44 0.33 0.40 0.40 0.39 0.40 0.39 0.38 0.36 0.38 Er 0.45 0.35 0.33 0.32 0.36 0.46 0.46 1.01 0.30 0.56 1.16 1.00 0.99 0.97 1.03 1.01 1.03 1.00 0.95 1.00 Tm 0.06 0.05 0.05 0.05 0.05 0.07 0.07 0.15 0.04 0.08 0.17 0.15 0.13 0.13 0.15 0.12 0.13 0.13 0.12 0.13 Yb 0.39 0.31 0.30 0.30 0.33 0.50 0.43 0.97 0.29 0.55 1.05 0.91 0.75 0.75 0.87 0.67 0.72 0.82 0.75 0.74 Lu 0.06 0.05 0.05 0.05 0.05 0.08 0.07 0.14 0.05 0.09 0.16 0.14 0.11 0.11 0.13 0.09 0.10 0.12 0.11 0.11 U 0.65 0.53 0.59 0.49 0.57 2.05 2.71 2.37 1.93 2.27 1.09 0.71 0.82 0.72 0.84 0.25 0.26 0.28 0.27 0.27 Th 1.25 1.22 1.07 0.84 1.10 1.44 1.03 1.26 0.78 1.13 1.70 1.61 1.78 1.52 1.65 1.44 1.40 1.72 1.67 1.56 U/Th 0.52 0.43 0.55 0.58 0.52 1.42 2.63 1.88 2.47 2.10 0.64 0.44 0.46 0.47 0.50 0.17 0.19 0.16 0.16 0.17 (La/Yb)N 1.29 1.59 1.39 1.23 1.38 1.26 0.97 0.85 1.40 1.12 0.89 0.95 0.96 0.97 0.94 0.95 0.91 1.15 1.14 1.04 (La/Ce)N 1.13 1.11 1.11 1.18 1.13 0.91 0.68 1.05 0.70 0.84 1.71 2.03 1.61 1.69 1.76 1.79 1.70 1.73 1.72 1.74 δCe 1.04 1.08 1.06 0.96 1.04 1.37 1.71 1.03 1.69 1.45 0.65 0.60 0.65 0.61 0.63 0.62 0.65 0.62 0.61 0.63 δEu 1.06 1.01 0.78 0.93 0.95 0.98 0.80 0.97 1.11 0.97 0.99 0.84 0.94 0.99 0.94 0.86 0.96 0.98 0.93 0.93 ΣREE 27.18 26.41 22.49 20.15 24.06 36.04 29.34 49.88 26.95 35.55 49.49 37.43 42.90 43.55 43.34 33.30 35.07 49.81 45.56 40.94 ∑LREE 24.14 23.86 20.17 17.70 21.47 32.82 26.53 43.64 24.99 32.00 40.83 31.53 34.71 35.25 35.58 26.78 28.56 42.27 38.61 34.06 ∑HREE 3.04 2.55 2.32 2.45 2.59 3.22 2.81 6.24 1.96 3.56 8.66 5.90 8.19 8.30 7.76 6.52 6.51 7.54 6.95 6.88 L/H 7.94 9.36 8.69 7.22 8.30 10.19 9.44 6.99 12.75 9.84 4.71 5.34 4.24 4.25 4.64 4.11 4.39 5.61 5.56 4.91 注: Al/(Al+Fe)比值为Al2O3/(Al2O3+TFe2O3)的值, *为检测线以下, 实验测试由澳实分析检测(广州)有限公司完成. 含量单位: 主量元素为%, 微量、稀土元素为10-6. -
[1] 吴福元, 曹林. 东北亚地区的若干重要基础地质问题[J]. 世界地质, 1999, 18(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ902.001.htm
Wu F Y, Cao L. Some important problems of geology in northeastern Asia[J]. World Geology, 1999, 18(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ902.001.htm
[2] 吴福元, Wilde S, 孙德有. 佳木斯地块片麻状花岗岩的锆石离子探针U-Pb年龄[J]. 岩石学报, 2001, 17(3): 443-452. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200103012.htm
Wu F Y, Wilde S, Sun D Y. Zircon SHRIMP U-Pb ages of gneissic granites in Jiamusi massif, northeastern China[J]. Acta Petrologica Sinica, 2001, 17(3): 443-452. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200103012.htm
[3] Wilde S A, Zhang X Z, Wu F Y. Extension of a newly identified 500 Ma metamorphic terrane in North East China: Further U-Pb SHRIMP dating of the Mashan complex, Heilongjiang Province, China[J]. Tectonophysics, 2000, 328(1/2): 115-130. http://www.sciencedirect.com/science/article/pii/S0040195100001803
[4] Wilde S A, Wu F Y, Zhang X Z. Late Pan-African magmatism in northeastern China: SHRIMP U-Pb zircon evidence from granitoids in the Jiamusi massif[J]. Precambrian Research, 2003, 122(1/4): 311-327. https://www.sciencedirect.com/science/article/abs/pii/S0301926802002176
[5] Sengor A M C, Natal'in B A. Paleotectonics of Asia: Fragments of a synthesis[M]//Yin A, Harrison M. The tectonic evolution of Asia. Cambridge: Cambridge University Press, 1996: 486-640.
[6] Li J Y. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26(3/4): 207-224. http://www.onacademic.com/detail/journal_1000035414545010_11ab.html
[7] 张贻侠, 孙运生, 张兴洲, 等. 中国满洲里-绥芬河地学断面[M]. 北京: 地质出版社, 1998: 1-34.
Zhang Y X, Sun Y S, Zhang X Z, et al. The Manzhouli-Suifenhe geoscience section, China[M]. Beijing: Geological Publishing House, 1998: 1-34. (in Chinese)
[8] Zhang X Z, Guo Y, Zhou J B, et al. Late Paleozoic-Early Mesozoic tectonic evolution in the east margin of the Jiamusi massif, eastern Northeastern China[J]. Russian Journal of Pacific Geology, 2015, 9(1): 1-10. doi: 10.1134/S181971401501008X
[9] 王成文, 金巍, 张兴洲, 等. 东北及邻区晚古生代大地构造属性新认识[J]. 地层学杂志, 2008, 32(2): 119-136. doi: 10.3969/j.issn.0253-4959.2008.02.001
Wang C W, Jin W, Zhang X Z, et al. New understanding of the Late Paleozoic tectonics in Northeastern China and adjacent areas[J]. Journal of Stratigraphy, 2008, 32(2): 119-136. doi: 10.3969/j.issn.0253-4959.2008.02.001
[10] Khanchuk A I. Pre-Neogene tectonics of the Sea-of-Japan region: a view from the Russian side[J]. Earth Science, 2001, 55(5): 275-291. http://www.researchgate.net/publication/291765129_Pre-Neogene_tectonics_of_the_Sea-of-Japan_region_A_view_from_the_Russian_side
[11] Sengor A M C, Natal'in B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364(6435): 299-307. doi: 10.1038/364299a0
[12] Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6): 1069. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2002TC001484
[13] Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian orogenic belt[J]. Journal of the Geological Society, 2007, 164(1): 31-47. doi: 10.1144/0016-76492006-022
[14] Faure M, Natal'in B. The geodynamic evolution of the eastern Eurasian margin in Mesozoic times[J]. Tectonophysics, 1992, 208(4): 397-411. doi: 10.1016/0040-1951(92)90437-B
[15] Natal'in B. History and modes of Mesozoic accretion in southeastern Russia[J]. Island Arc, 1993, 2(1): 15-34. doi: 10.1111/j.1440-1738.1993.tb00072.x
[16] 曾振, 张兴洲, 周建波, 等. 跃进山杂岩中二叠纪变玄武岩的锆石U-Pb年代学、地球化学及其地质意义[J]. 大地构造与成矿学, 2018, 42(2): 365-378. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201802014.htm
Zeng Z, Zhang X Z, Zhou J B, et al. Geochemistry and zircon U-Pb age of Permian metabasalts in the Yuejinshan complexes and its tectonic implications[J]. Geotectonica et Metallogenia, 2018, 42(2): 365-378. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201802014.htm
[17] 崔维龙. 佳木斯地块东缘二叠纪俯冲洋壳的发现及意义[D]. 长春: 吉林大学, 2018.
Cui W L. The discovery and significance of Permian subducting oceanic crust on the eastern margin of Jiamusi massif, NE China[D]. Changchun: Jilin University, 2018.
[18] 张庆龙, 水谷伸治郎, 小智, 等. 黑龙江省那丹哈达地体构造初探[J]. 地质论评, 1989, 35(1): 67-71. doi: 10.3321/j.issn:0371-5736.1989.01.008
Zhang Q L, Shinjino M, Satoru K, et al. The Nadanhada terrane in Heilongjiang Province[J]. Geological Review, 1989, 35(1): 67-71. doi: 10.3321/j.issn:0371-5736.1989.01.008
[19] 黑龙江省地质矿产局. 黑龙江省区域地质志[M]. 北京: 地质出版社, 1993: 1-619.
Bureau of Geology and Mineral Resources of Heilongjiang Province. Regional geology of Heilongjiang Province[M]. Beijing: Geological Publishing House, 1993: 1-619. (in Chinese)
[20] Kojima S. Mesozoic terrane accretion in Northeast China, Sikhote-Alin and Japan regions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1989, 69: 213-232. doi: 10.1016/0031-0182(89)90165-X
[21] Mizutani S, Kojima S. Mesozoic radiolarian biostratigraphy of Japan and collage tectonics along the eastern continental margin of Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 96(1/2): 3-22. https://www.sciencedirect.com/science/article/abs/pii/003101829290056B
[22] 张庆龙, 水谷伸治郎, 小智. 放射虫化石及地体对比研究[J]. 古生物学报, 1997, 36(2): 245-252. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX702.007.htm
Zhang Q L, Shinjino M, Satoru K. Radiolaria and correlation study of terranes[J]. Acta Palaeontologica Sinica, 1997, 36(2): 245-252. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX702.007.htm
[23] 布锐G I. 东北那达哈达岭硅质岩中的三叠纪牙形刺[J]. 微体古生物学报, 1996, 13(2): 207-214. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT602.006.htm
Buryi G I. Triassic conodonts from the cherts of Nadanhada range, northeast China[J]. Acta Micropalaeontologica Sinica, 1996, 13(2): 207-214. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT602.006.htm
[24] 李朋武, 张世红, 申宁华. 黑龙江省那丹哈达与日本美浓地区古地磁结果对比及意义[J]. 长春地质学院学报, 1997, 27(1): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ701.010.htm
Li P W, Zhang S H, Shen N H. The contrast of paleomagnetic results between Nadanhada area, Heilongjiang province and Mino area, Japan, and its significance[J]. Journal of Changchun University of Earth Sciences, 1997, 27(1): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ701.010.htm
[25] 马金萍, 张婷婷, 薛林福. 黑龙江东部晚三叠世-早侏罗世放射虫硅质岩特征及油气远景[J]. 地质与资源, 2008, 17(4): 312-313, 317. doi: 10.3969/j.issn.1671-1947.2008.04.015 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9409.shtml
Ma J P, Zhang T T, Xue L F. Characteristics of the T3-J1 radiolarian chert and potential for hydrocarbon in eastern Heilongjiang Province[J]. Geology and Resources, 2008, 17(4): 312-313, 317. doi: 10.3969/j.issn.1671-1947.2008.04.015 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9409.shtml
[26] 水谷伸治郎, 邵济安, 张庆龙. 那丹哈达地体与东亚大陆边缘中生代构造的关系[J]. 地质学报, 1989(3): 204-216. doi: 10.3321/j.issn:0001-5717.1989.03.005
Shinjino M, Shao J A, Zhang Q L. The Nadanhada terrane in relation to Mesozoic tectonics on continental margins of east Asia[J]. Acta Geological Sinica, 1989(3): 204-216. doi: 10.3321/j.issn:0001-5717.1989.03.005
[27] 杨惠心, 李朋武, 禹惠民. 中国东北地区主要地体古地磁学研究[J]. 长春科技大学学报, 1998, 28(2): 203-205, 212. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ802.015.htm
Yang H X, Li P W, Yu H M. Palaeomagnetic study of the main terranes, northeast area, China[J]. Journal of Changchun University of Science and Technology, 1998, 28(2): 203-205, 212. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ802.015.htm
[28] 邵济安, 王成源, 唐克东, 等. 那丹哈达岭地层与地体的关系[J]. 地层学杂志, 1990, 14(4): 286-291. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ199004003.htm
Shao J A, Wang C Y, Tang K D, et al. Relationship between strata and terrane of the Nadanhada range[J]. Journal of Stratigraphy, 1990, 14(4): 286-291. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ199004003.htm
[29] 张世红, 施央申, 孙岩, 等. 黑龙江完达山造山带及其与那丹哈达地体的关系[J]. 南京大学学报(地球科学), 1991, 3(3): 287-294.
Zhang S H, Shi Y S, Sun Y, et al. On the relation between Wandashan orogenic belt and Nadanhada terrane in Heilongjiang province[J]. Journal of Nanjing University (Earth Sciences), 1991, 3(3): 287-294.
[30] 曾允孚, 夏文杰. 沉积岩石学[M]. 北京: 地质出版社, 1986: 190-199.
Zeng Y F, Xia W J. Sedimentary petrology[M]. Beijing: Geological Publishing House, 1986: 190-199.
[31] Murray R W, Brink M R B T, Gerlach D C, et al. Rare earth, major, and trace element composition of Monterey and DSDP chert and associated host sediment: Assessing the influence of chemical fractionation during diagenesis[J]. Geochimica et Cosmochimica Acta, 1992, 56(7): 2657-2671. doi: 10.1016/0016-7037(92)90351-I
[32] Haskin L A, Haskin M A, Frey F A, et al. Relative and absolute terrestrial abundances of the rare earths[M]//Ahrens L H. Origin and Distribution of the Elements. Oxford: Pergamon Press, 1968: 889-912.
[33] Bostrom K, Peterson M N A. The origin of aluminum-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise[J]. Marine Geology, 1969, 7(5): 427-447. doi: 10.1016/0025-3227(69)90016-4
[34] Girty G H, Ridge D L, Knaack C, et al. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California[J]. Journal of Sedimentary Research, 1996, 66(1): 107-118. http://www.onacademic.com/detail/journal_1000036309123410_ee07.html
[35] Murray R W. Chemical criteria to identify the depositional environment of chert: General principles and applications[J]. Sedimentary Geology, 1994, 90(3/4): 213-232. https://www.sciencedirect.com/science/article/pii/0037073894900396
[36] 杨建民, 王登红, 毛景文, 等. 硅质岩岩石化学研究方法及其在"镜铁山式"铁矿床中的应用[J]. 岩石矿物学杂志, 1999, 18(2): 108-120. doi: 10.3969/j.issn.1000-6524.1999.02.002
Yang J M, Wang D H, Mao J W, et al. The petrochemical research method for silicalite and its application to the "Jingtieshan Type" iron deposits[J]. Acta Petrologica et Mineralogica, 1999, 18(2): 108-120. doi: 10.3969/j.issn.1000-6524.1999.02.002
[37] Adachi M, Yamamoto K, Sugisaki R. Hydrothermal chert and associated siliceous rocks from the northern Pacific: Their geological significance as indication of ocean ridge activity[J]. Sedimentary Geology, 1986, 47(1/2): 125-148. http://www.sciencedirect.com/science/article/pii/0037073886900758
[38] Yamamoto K. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes[J]. Sedimentary Geology, 1987, 52(1/2): 65-108. http://ir.nul.nagoya-u.ac.jp/jspui/bitstream/2237/6571/1/ot3111.pdf
[39] 张汉文. 秦岭泥盆系的热水沉积岩及其与矿产的关系——概论秦岭泥盆纪的海底热水作用[J]. 中国地质科学院西安地质矿产研究所所刊, 1991(31): 15-39. https://www.cnki.com.cn/Article/CJFDTOTAL-XBFK199131001.htm
Zhang H W. On hydrothermal sedimentary rocks and their relationships with mineral resources in Devonian period of Qinling area, China[J]. Northwest Geoscience, 1991(31): 15-39. https://www.cnki.com.cn/Article/CJFDTOTAL-XBFK199131001.htm
[40] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/4): 111-129. https://www.sciencedirect.com/science/article/pii/000925419490085X
[41] Sugisaki R, Yamamoto K, Adachi M. Triassic bedded cherts in central Japan are not pelagic[J]. Nature, 1982, 298(5875): 644-647. doi: 10.1038/298644a0
[42] 杨水源, 姚静. 安徽巢湖平顶山中二叠统孤峰组硅质岩的地球化学特征及成因[J]. 高校地质学报, 2008, 14(1): 39-48. doi: 10.3969/j.issn.1006-7493.2008.01.005
Yang S Y, Yao J. Geochemistry and origin of siliceous rocks from the Gufeng Formation of Middle Permian in the Pingdingshan area, Chaohu region, Anhui Province[J]. Geological Journal of China Universities, 2008, 14(1): 39-48. doi: 10.3969/j.issn.1006-7493.2008.01.005
[43] Murray R W, Brink M R B T, Gerlach D C, et al. Rare earth, major, and trace elements in chert from the Franciscan complex and Monterey Group, California: Assessing REE sources to fine-grained marine sediment[J]. Geochimica et Cosmochimica Acta, 1991, 55(7): 1875-1895. doi: 10.1016/0016-7037(91)90030-9
-