U-Pb ZIRCON AGE OF LIANHUASHAN PLUTON IN THE JUNCTION OF ANHUI-ZHEJIANG-JIANGXI PROVINCES: Geological Implication
-
摘要:
皖浙赣交界莲花山岩体位处扬子板块东南缘,即扬子板块与华夏板块结合带之东段(江南造山带东段北缘).该岩体侵入于新元古代末期的上墅组(赣东北),岩性主要为正长花岗岩及花斑岩,后期因变质变形作用而发生面理化并具有绿片岩相浅变质矿物组合.地球化学特征指示,莲花山花岗岩很有可能为形成于大陆边缘后造山环境的A2型花岗岩.锆石LA-ICP-MS U-Pb定年结果显示岩体年龄为878±70 Ma,为晋宁晚期的产物.
-
关键词:
- 江南造山带 /
- 莲花山花岗岩 /
- 锆石LA-ICP-MS U-Pb定年 /
- 地球化学特征 /
- 岩石成因
Abstract:The Lianhuashan pluton in the junction of Anhui-Zhejiang-Jiangxi provinces is located in the southeast margin of Yangtze Plate, namely the junction zone of Yangtze Plate and Cathaysia Plate (the northern margin of eastern section of Jiangnan orogenic belt). The pluton intruded into the late Neoproterozoic Shangshu Formation (northeastern Jiangxi), with the lithology of syenogranite and granophyres. In later period, the metamorphic deformation resulted in foliated and greenschist facies epimetamorphic mineral assemblage. The geochemical characteristics indicate that the Lianhuashan granite is probably A2 type formed in continental margin post-orogenic environment. The zircon LA-ICP-MS U-Pb dating of the pluton yields the age of 878±70 Ma, which is the product of late Jinning Period.
-
-
图 1 研究区地质简图(据文献[7]修改)
Figure 1.
表 1 莲花山岩体主量元素分析结果
Table 1. Contents of major elements in Lianhuashan pluton
样品号 HX014-1 HX014-2 HX015-1 HX015-2 HX016-1 HX016-2 SiO2 77.15 75.83 76.92 76.37 76.95 77.48 TiO2 0.05 0.17 0.18 0.11 0.12 0.09 Al2O3 12.44 12.57 11.61 12.37 12.02 11.74 Fe2O3 0.9 0.83 0.55 0.66 0.95 0.98 FeO 0.08 0.77 0.85 0.32 0.37 0.22 MgO 0.05 0.19 0.13 0.08 0.05 0.02 MnO 0.02 0.03 0.02 0.02 0.03 0.02 CaO 0.2 0.46 0.47 0.28 0.67 0.48 Na2O 3.27 3.43 2.82 2.57 3.39 3.21 K2O 5.05 4.73 5.29 6.39 4.76 5.08 P2O5 0.01 0.02 0.01 < 0.01 < 0.01 < 0.01 烧失量 0.67 0.77 0.99 0.71 0.5 0.51 含量单位: %. 表 2 莲花山岩体微量元素分析结果
Table 2. Contents of trace elements in Lianhuashan pluton
样品编号 HX014-1 HX014-2 HX015-1 HX015-2 HX016-1 HX016-2 Y 74 68.7 63.7 76.2 68.2 79.7 Zr 76.1 196 159 116 153 158 Nb 14.7 12.1 11.9 13.8 11.5 13.7 Cs 7.38 4.68 5.4 5.88 4.7 7.17 Ba 33.6 839 374 140 677 571 La 11.1 49.1 64.7 44.2 65.8 43.2 Ce 35.5 86 132 98.5 126 77.8 Pr 3.52 11.8 15.7 12.4 14.9 11 Nd 13.7 46.1 61.6 52.1 57.4 44.4 Sm 4.46 10.4 12.6 12.3 11.6 10.5 Eu 0.07 1.21 0.71 0.6 1.04 0.83 Gd 6.36 10.4 12 12.7 11.2 11 LREE/HREE 0.61 1.88 2.76 1.79 2.52 1.49 Tb 1.51 1.78 1.88 2.13 1.85 1.98 Dy 10.9 10.9 11.2 12.8 11.2 12.7 Ho 2.37 2.24 2.14 2.6 2.29 2.69 Er 7.27 6.51 6.07 7.44 6.73 8.09 Tm 1.15 0.97 0.87 1.05 0.94 1.2 Yb 8.07 6.23 5.61 7.23 6.32 7.93 Lu 1.16 0.9 0.78 1.02 0.91 1.11 Hf 3.83 6.6 5.78 5.3 5.37 6.01 Ta 1.91 1.05 0.84 1.23 0.84 1.27 Pb 36.8 30.2 33.9 47.9 42.7 55.2 Th 12.6 15.4 19.4 25.9 16.6 18.6 U 4.53 2.88 2.89 3.7 3.22 3.78 LaN/YbN 0.15 0.71 1.01 0.58 0.96 0.54 Li 6 20.3 24.7 14.6 11.3 3.54 Be 2.71 3.34 1.84 2.14 2.03 3.21 Sc 4.97 6.46 6.01 8.19 7.26 7.22 V 1.67 8.02 3.98 1.77 1.88 0.82 Cr 0.71 3.09 1.29 0.68 2.22 0.41 Co 0.35 1.51 1.2 0.72 0.41 0.18 Ni 1.25 1.95 1.1 5.79 0.63 0.33 Sr 13.9 39.1 22.3 14.3 26.9 24.7 Zn 36.7 55.3 59.2 41.1 68.3 60.6 Ga 18.2 18.1 16.5 18.1 18.6 18.8 Rb 276 185 175 230 147 142 δEu 0.04 0.36 0.18 0.15 0.28 0.24 ∑REE 737.21 1781.42 1322.31 1042.93 1590.38 1414.35 含量单位: 10-6. 表 3 LA-ICP-MS锆石U-Th-Pb分析结果
Table 3. The LA-ICP-MS zircon U-Th-Pb analysis results
点号 浓度/10-6 Th/U 同位素比值 年龄/Ma Pb* 232Th 238U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1 154.5 476.8 991.1 0.46 0.0663 0.0015 1.2243 0.0305 0.1330 0.0014 815 48 812 14 805 2 332.7 1240 1836 0.64 0.0663 0.0013 1.3425 0.0254 0.1460 0.001 817 40 864 11 878 3 168.5 632.5 962 0.62 0.0674 0.0014 1.3154 0.0273 0.1407 0.0009 850 44 852 12 849 4 97.9 284.1 653.2 0.41 0.0669 0.0013 1.1985 0.0227 0.1294 0.0012 835 39 800 10 784 5 85.7 316 582.8 0.51 0.0706 0.0017 1.1941 0.0295 0.1219 0.0011 946 51 798 14 742 6 179.8 473.9 1132 0.39 0.0646 0.0012 1.2361 0.0248 0.1379 0.0012 761 240 817 11 833 7 210.1 454.5 1337 0.32 0.0672 0.0011 1.2923 0.0228 0.1386 0.0011 856 35 842 10 837 8 104.1 281.3 641.6 0.41 0.0668 0.0014 1.2880 0.0258 0.1393 0.0010 831 43 840 11 840 9 178.2 367.4 1131 0.31 0.0675 0.0012 1.3000 0.0240 0.1388 0.0010 854 42 846 11 838 10 21.8 105.5 111.7 0.89 0.0683 0.0024 1.4042 0.0475 0.1496 0.0017 876 125 891 20 899 11 51.4 140.7 333.4 0.4 0.0657 0.0016 1.1963 0.0287 0.1314 0.0010 796 55 799 13 796 12 269.5 1141 1778 0.57 0.0704 0.0015 1.2269 0.0257 0.1260 0.0010 939 44 813 12 765 13 120.9 278 794.5 0.33 0.0708 0.0018 1.2803 0.0332 0.1303 0.0011 954 55 837 15 790 14 53 195.5 336.2 0.54 0.0644 0.0014 1.1616 0.0257 0.1304 0.0010 767 245 783 12 790 -
[1] Zafar T, Rehman H U, Mahar M A, et al. A critical review on petrogenetic, metallogenic and geodynamic implications of granitic rocks exposed in north and east China: New insights from apatite geochemistry[J]. Journal of Geodynamics, 2020, 136: 101723. doi: 10.1016/j.jog.2020.101723
[2] Yin C Q, Lin S F, Davis D W, et al. Tectonic evolution of the southeastern margin of the Yangtze Block: Constraints from SHRIMP U-Pb and LA-ICP-MS Hf isotopic studies of zircon from the eastern Jiangnan orogenic belt and implications for the tectonic interpretation of South China[J]. Precambrian Research, 2013, 236: 145-156. doi: 10.1016/j.precamres.2013.07.022
[3] 吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
Wu FY, Li X H, Yang J H, et al. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 2007, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
[4] 肖庆辉, 邱瑞照, 邢作云, 等. 花岗岩成因研究前沿的认识[J]. 地质论评, 2007, 53(S1): 17-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2007S1005.htm
Xiao Q H, Qiu R Z, Xing Z Y, et al. Major frontiers on studies of granite formation[J]. Geological Review, 2007, 53(S1): 17-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2007S1005.htm
[5] Liu C H, Zhao G C, Liu F L, et al. Coexistence of A- and I-type granites in the Lüliang complex: Tectonic implications for the middle Paleoproterozoic Trans-North China Orogen, North China Craton[J]. Lithos, 2021, 380-381: 105875. doi: 10.1016/j.lithos.2020.105875
[6] 耿元生, 旷红伟, 杜利林, 等. 华北、华南、塔里木三大陆块中-新元古代岩浆岩的特征及其地质对比意义[J]. 岩石学报, 2020, 36(8): 2276-2312. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202008003.htm
Geng Y S, Kuang H W, Du L L, et al. The characteristics of Meso-Neoproterozoic magmatic rocks in North China, South China and Tarim blocks and their significance of geological correlation[J]. Acta Petrologica Sinica, 2020, 36(8): 2276-2312. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202008003.htm
[7] 吴荣新, 郑永飞, 吴元保. 皖南石耳山新元古代花岗岩锆石U-Pb定年以及元素和氧同位素地球化学研究[J]. 高校地质学报, 2005, 11(3): 364-382. doi: 10.3969/j.issn.1006-7493.2005.03.008
Wu R X, Zheng Y F, Wu Y B. Zircon U-Pb Age, Element and oxygen isotope geochemistry of Neoproterozoic granites at Shiershan in south Anhui Province[J]. Geological Journal of China Universities, 2005, 11(3): 364-382. doi: 10.3969/j.issn.1006-7493.2005.03.008
[8] 薛怀民, 马芳, 宋永勤, 等. 江南造山带东段新元古代花岗岩组合的年代学和地球化学: 对扬子与华夏地块拼合时间与过程的约束[J]. 岩石学报, 2010, 26(11): 3215-3244. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201011006.htm
Xue H M, Ma F, Song Y Q, et al. Geochronology and geochemistry of the Neoproterozoic granitoid association from eastern segment of the Jiangnan orogen, China: Constraints on the timing and process of amalgamation between the Yangtze and Cathaysia blocks[J]. Acta Petrologica Sinica, 2010, 26(11): 3215-3244. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201011006.htm
[9] 张继彪, 刘燕学, 丁孝忠, 等. 江南造山带东段新元古代登山群年代学及大地构造意义[J]. 地球科学, 2020, 45(6): 2011-2029. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006016.htm
Zhang J B, Liu Y X, Ding X Z, et al. Geochronology of the Dengshan Group in the eastern Jiangnan Orogen, and its tectonic significance[J]. Earth Science, 2020, 45(6): 2011-2029. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006016.htm
[10] 段政, 廖圣兵, 褚平利, 等. 江南造山带东段新元古代九岭复式岩体锆石U-Pb年代学及构造意义[J]. 中国地质, 2019, 46(3): 493-516. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201903006.htm
Duan Z, Liao S B, Chu P L, et al. Zircon U-Pb ages of the Neoproterozoic Jiuling complex granitoid in the eastern segment of the Jiangnan orogen and its tectonic significance[J]. Geology in China, 2019, 46(3): 493-516. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201903006.htm
[11] 王阳阳, 宋传中, 李加好, 等. 江南造山带石耳山新元古代花岗岩的构造变形、LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质论评, 2019, 65(1): 85-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201901013.htm
Wang Y Y, Song C Z, Li J H, et al. Deformational characteristics and LA-ICP-MS zircon U-Pb ages of granites at Shiershan in the Jiangnan orogen and their geological significance[J]. Geological Review, 2019, 65(1): 85-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201901013.htm
[12] 王晓虎, 张文高, 陈正乐, 等. 华南沿海莲花山断裂带控矿构造变形时限: 来自锆石U-Pb年龄与地层时代的约束[J]. 中国地质, 2020, 47(4): 985-997. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202004007.htm
Wang X H, Zhang W G, Chen Z L, et al. Deformation time limit of ore-controlling structures in Lianhuashan fault zone along the South China coast: Constraints from zircon U-Pb age and stratigraphic age[J]. Geology in China, 2020, 47(4): 985-997. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202004007.htm
[13] 梁科伟, 李成禄, 张立东, 等. 大兴安岭诺敏地区二叠纪花岗岩的地球化学特征及地质意义[J]. 地质与资源, 2012, 21(2): 181-187. doi: 10.3969/j.issn.1671-1947.2012.02.001 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9034.shtml
Liang K W, Li C L, Zhang L D, et al. Geochemistry and its geological implication of the Permian granite in Nuomin, Daxinganling region[J]. Geology and Resources, 2012, 21(2): 181-187. doi: 10.3969/j.issn.1671-1947.2012.02.001 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9034.shtml
[14] 张志辉, 张达, 贺晓龙, 等. 江西九岭杂岩中黑云母花岗闪长岩锆石U-Pb年龄及其对扬子和华夏板块碰撞拼合时间的限定[J/OL]. 中国地质: 1-26. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=DIZI20191209000&uniplatform=NZKPT&v=9KB2W89RffONNdAGuArAhMUL4awEoanmNldc1cPqq0yPaLzEirdILjJ8yCws0jbT, 2021-06-07.
Zhang Z H, Zhang D, He X L, et al, Biotite granodiorite zircon U-Pb age in Jiuling complex, Jiangxi Priovince and its limitation on the collision and splicing time of the Yangtze and Huaxia Plates[J/OL]. Geology in China: 1-26. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=DIZI20191209000&uniplatform=NZKPT&v=9KB2W89RffONNdAGuArAhMUL4awEoanmNldc1cPqq0yPaLzEirdILjJ8yCws0jbT, 2021-06-07.
[15] 王存智, 黄志忠, 赵希林, 等. 下扬子地区姚村A型花岗岩年代学、地球化学特征及岩石成因[J]. 中国地质, 2021, 48(2): 549-563. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102015.htm
Wang C Z, Huang Z Z, Zhao X L, et al. Geochronology, geochemistry and petrogenesis of early Cretaceous Yaocun A-type granite in the lower Yangtze region[J]. Geology in China, 2021, 48(2): 549-563. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102015.htm
[16] 周效华, 陈荣, 张炜, 等. 江南造山带九岭南缘宜丰岩组火山岩锆石SHRIMP年代学及Hf同位素特征[J]. 地质学报, 2019, 93(5): 1069-1080. doi: 10.3969/j.issn.0001-5717.2019.05.006
Zhou X H, Chen R, Zhang W, et al. Zircon SHRIMP geochronology and Hf isotopic characteristics of volcanic rocks from the Yifeng Formation in the southern margin of the Jiuling uplift in the Jiangnan orogen[J]. Acta Geologica Sinica, 2019, 93(5): 1069-1080. doi: 10.3969/j.issn.0001-5717.2019.05.006
[17] Huang S F, Wang W, Pandit M K, et al. Neoproterozoic S-type granites in the western Jiangnan Orogenic Belt, South China: Implications for petrogenesis and geodynamic significance[J]. Lithos, 2019, 342-343: 45-58. doi: 10.1016/j.lithos.2019.05.016
[18] 菅坤坤, 何元方, 赵端昌, 等. 东昆仑中段灶火沟花岗岩锆石U-Pb年代学、地球化学特征及其构造意义[J]. 地球科学与环境学报, 2020, 42(5): 603-621. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202005004.htm
Jian K K, He Y F, Zhao R C, et al. Zircon U-Pb dating and geochemical characteristics of Zaohuogou granitoids in the middle part of East Kunlun, China and their tectonic significance[J]. Journal of Earth Sciences and Environment, 2020, 42(5): 603-621. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202005004.htm
[19] 李献华, 李正祥, 周汉文, 等. 皖南新元古代花岗岩的SHRIMP锆石U-Pb年代学、元素地球化学和Nd同位素研究[J]. 地质论评, 2002, 48(S1): 8-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1003.htm
Li X H, Li Z X, Zhou H W, et al. SHRIMP U-Pb zircon geochronological, geochemical and Nd isotopic study of the Neoproterozoic granitoids in southern Anhui[J]. Geological Review, 2002, 48(S1): 8-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1003.htm
[20] 高林志, 杨明桂, 丁孝忠, 等. 华南双桥山群和河上镇群凝灰岩中的锆石SHRIMP U-Pb年龄——对江南新元古代造山带演化的制约[J]. 地质通报, 2008, 27(10): 1744-1751. doi: 10.3969/j.issn.1671-2552.2008.10.017
Gao L Z, Yang M G, Ding X Z, et al. SHRIMP U-Pb zircon dating of tuff in the Shuangqiaoshan and Heshangzhen groups in South China: Constraints on the evolution of the Jiangnan Neoproterozoic orogenic belt[J]. Geological Bulletin of China, 2008, 27(10): 1744-1751. doi: 10.3969/j.issn.1671-2552.2008.10.017
[21] 马莫. 花岗岩岩石学与花岗岩问题[M]. 北京: 地质出版社, 1979: 1-255.
Marmo V. Granite petrology and the granite problem[M]. Beijing: Geological Publishing House, 1979: 1-255.
[22] 苏玉平, 唐红峰. A型花岗岩的微量元素地球化学[J]. 矿物岩石地球化学通报, 2005, 24(3): 245-251. doi: 10.3969/j.issn.1007-2802.2005.03.012
Su Y P, Tang H F. Trace element geochemistry of A-type granites[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2005, 24(3): 245-251. doi: 10.3969/j.issn.1007-2802.2005.03.012
[23] 许保良, 阎国翰, 张臣, 等. A型花岗岩的岩石学亚类及其物质来源[J]. 地学前缘, 1998, 5(3): 113-124. doi: 10.3321/j.issn:1005-2321.1998.03.011
Xu B L, Yan G H, Zhang C, et al. Petrological subdivision and source material of A-type granites[J]. Earth Science Frontiers, 1998, 5(3): 113-124. doi: 10.3321/j.issn:1005-2321.1998.03.011
[24] Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81. doi: 10.1007/BF00384745
[25] Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2): 189-200. doi: 10.1007/BF00374895
-