DETERMINATION OF EIGHTEEN COMPONENTS IN SILICATE ROCKS BY X-RAY FLUORESCENCE SPECTROMETRY WITH HIGH DILUTION RATIO FUSION SAMPLE PREPARATION
-
摘要:
选取土壤、水系沉积物、岩石、超基性岩、黏土等标准物质,应用混合溶剂与样品质量比为14:1的高稀释比方法熔融制备测试样品,拟合校准曲线,建立X射线荧光光谱(XRF)同时测定硅酸盐岩石样品中18种组分(SiO2、Al2O3、TFe2O3、MgO、CaO、K2O、Na2O、TiO2、BaO、MnO、P2O5、Cr2O3、V2O5、Rb、Sr、Zr、Cu、Ni)的快速分析方法.应用帕纳科Eagon2全自动高频电感熔样机,称取7.0000 g(45Li2B4O7+10LiBO2+5LiF)混合溶剂与0.5000 g样品混合均匀,分别加入氧化剂饱和硝酸铵溶液2滴,脱模剂饱和溴化锂溶液4滴,于700℃先预氧化4 min,再1 120℃熔融9 min制备样片,自然冷却至室温.此熔样方法能保证样品中待测组分熔化完全,并制得表面光滑平整的样片.用国家标准物质验证,测试结果的准确度和精密度均符合《地质矿产实验室测试质量管理规范》(DZ/T 0130-2006)要求.
Abstract:The paper introduces a rapid analysis method of X-ray fluorescence spectrometry (XRF) to determine 18 components (SiO2, Al2O3, TFe2O3, MgO, CaO, K2O, Na2O, TiO2, BaO, MnO, P2O5, Cr2O3, V2O5, Rb, Sr, Zr, Cu and Ni) in silicate samples. Selecting the reference materials such as soil, stream sediments, rocks of national first-class standard material, ultrabasic rocks and clay, the method applies high dilution ratio (14:1) of mixed solvent to sample mass for fusion sample preparation and fits the calibration curve. Through Eagon2 automatic high frequency inductance fusion machine, 7.0000 g of mixed solvent (45Li2B4O7+10LiBO2+5LiF) and 0.5000 g of sample are mixed uniformly, adding 2 drops of saturated ammonium nitrate solution as oxidant and then 4 drops of saturated lithium bromide solution as release agent, followed by preoxidation at 700℃ for 4 min and fusion at 1120℃ for 9 min, and finally cooling naturally to room temperature for sample preparation. The above fusion method can ensure that the components to be measured are completely melted and the sample surface is smooth and flat. Verified by national standard substances, the accuracy and precision of test results are in line with the requirements of Quality Management Code for Laboratory Testing of Geology and Mineral Resources (DZ/T 0130-2006).
-
-
表 1 校准样品中各组分的含量范围
Table 1. Concentration ranges of components in calibration samples
组分 含量范围/% 组分 含量范围/% SiO2 6.65~92.36 MnO 0.008~0.32 Al2O3 0.68~29.26 P2O5 0.005~0.946 TFe2O3 0.21~24.75 Cr2O3 0.005~1.56 MgO 0.05~38.82 V2O5 0.0014~0.137 CaO 0.095~51.10 Rb 0.0004~0.10 K2O 0.012~5.34 Sr 0.0003~0.12 Na2O 0.008~8.99 Zr 0.0011~0.154 TiO2 0.01~7.36 Cu 0.00022~0.123 BaO 0.001~0.198 Ni 0.00023~0.19 表 2 分析组分的测量条件
Table 2. Determination conditions of analyzed components
组分 分析线 分析晶体 探测器 准直器/μm 电压/kV 电流/mA 2θ/(°) PHD 谱峰 背景 LL UL SiO2 Kα PE 002 Flow 300 30 120 109.10 2.73 24 78 Al2O3 Kα PE 002 Flow 300 30 120 144.89 -1.44 22 78 TFe2O3 Kα LiF 200 Scint. 300 60 60 57.51 0.96 19 78 MgO Kα RX 1 Flow 700 30 120 23.09 1.54 35 65 CaO Kα TAP Flow 150 30 120 113.11 1.68 29 73 K2O Kα TAP Flow 300 30 120 136.69 2.11 31 74 Na2O Kα RX 1 Flow 700 30 120 27.92 1.72 35 66 TiO2 Kα LiF 220 Flow 300 40 90 86.16 -1.58 29 71 BaO Lα LiF 200 Flow 300 40 90 87.19 0.75 33 71 MnO Kα LiF 200 Flow 300 60 60 62.96 1.38 15 68 P2O5 Kα Ge 111 Flow 300 30 120 140.95 1.87 35 65 Cr2O3 Kα LiF 200 Flow 300 40 90 69.35 0.86 15 69 V2O5 Kα LiF 220 Flow 300 40 90 77.29 -1.17 13 69 Rb Kα LiF 200 Scint. 150 60 60 26.56 -0.62 25 75 Cu Kα LiF 200 Scint. 300 60 66 45.03 0.95 15 72 Ni Kα LiF 200 Scint. 300 60 66 48.66 0.94 15 69 Sr Kα LiF 200 Scint. 150 60 60 25.11 0.76 22 78 Zr Kα LiF 200 Scint. 150 60 60 22.52 0.50 24 78 Br Kα LiF 200 Scint. 150 60 60 29.92 1.09 20 78 Zn Kα LiF 200 Scint. 300 60 60 41.76 0.96 23 72 Rh Kα-c LiF 200 Scint. 150 60 60 18.47 26 78 表 3 熔剂及稀释比试验
Table 3. Test results of fluxes by dilution ratios
组号 稀释比 流动性 成片状况 熔解程度 工作曲线线性 SiO2和Na2O结果 1 1:8 流动性差 有气泡,不均匀 不完全 差 差 2 1:10 流动性较差 部分有气泡,不均匀 不完全 较差 差 3 1:12 流动性好 无气泡,均匀 不完全 好 较差 4 1:14 流动性很好 无气泡,均匀 完全 很好 好 5 1:16 流动性很好 无气泡,均匀 完全 很好 好 表 4 温度选择试验
Table 4. Test results of temperature selection
组号 温度/℃ 熔片状况 熔解程度 测试结果 1 1 000 结晶,不均匀,部分开裂 不完全 差 2 1 050 稍透亮,不均匀 不完全 一般 3 1 100 透亮,均匀 完全 一般 4 1 120 透亮,均匀 完全 好 5 1 150 透亮,均匀 完全 好 表 5 各组分的检出限
Table 5. Detection limits of components
组分 检出限/10-6 组分 检出限/10-6 理论 本法 理论 本法 SiO2 126 330 MnO 10.6 150 Al2O3 107 300 P2O5 21.8 120 TFe2O3 56 280 Cr2O3 12.6 90 MgO 63 180 V2O5 8.2 80 CaO 34 170 Rb 3.7 12 K2O 28 150 Sr 2.4 9 Na2O 55 380 Zr 3.5 12 TiO2 23 120 Cu 1.6 13 BaO 16.4 140 Ni 1.9 10 表 6 精密度试验结果
Table 6. Test results of precision
组分 GBW07107 GBW07304a Ycr 结果之差绝对值范围 Ycr 结果之差绝对值范围 SiO2 0.433 0~0.11 0.463 0.01~0.14 Al2O3 0.253 0~0.10 0.175 0~0.02 TFe2O3 0.111 0~0.04 0.090 0~0.02 MgO 0.072 0~0.01 0.061 0~0.01 CaO 0.044 0~0.006 0.049 0~0.01 K2O 0.060 0~0.01 0.029 0~0.01 Na2O 0.102 0.001~0.011 0.102 0~0.004 TiO2 0.015 0~0.004 0.017 0~0.005 BaO 0.009 0~0.004 0.008 0~0.004 MnO 0.0027 0~0.001 0.0068 0~0.002 P2O5 0.0086 0~0.004 0.0077 0~0.003 Cr2O3 0.0029 0~0.001 0.0025 0~0.002 V2O5 16.60 1.05~7.37 16.24 0.93~6.54 Rb 15.78 0.36~6.42 18.57 0.71~9.66 Sr 0.0012 0~0.0004 0.0013 0~0.0004 Zr 0.0009 0~0.0003 0.0009 0~0.0004 Cu 0.0019 0~0.0006 0.0017 0~0.0003 Ni 0.0012 0~0.0007 0.0011 0~0.0002 单位:%. n=6. 表 7 准确度试验结果
Table 7. Test results of accuracy
组分 GBW07107 GBW07122 GBW07430 GBW07382 测定值 推荐值 Y 相对误差 测定值 推荐值 Y 相对误差 测定值 推荐值 Y 相对误差 测定值 推荐值 Y 相对误差 SiO2 59.26 59.23 0.44 0.05 49.59 49.62 0.53 0.06 63.76 63.81 0.40 0.07 82.92 82.85 0.27 0.09 Al2O3 18.79 18.82 1.60 0.15 13.79 13.76 1.88 0.25 17.89 17.85 1.65 0.20 7.92 7.90 2.41 0.20 TFe2O3 7.63 7.6 2.45 0.42 14.78 14.80 1.81 0.14 5.40 5.44 2.79 0.67 3.08 3.05 3.41 0.92 MgO 2.00 2.01 3.89 0.30 7.23 7.20 2.50 0.35 0.84 0.84 4.97 0.12 0.66 0.67 5.27 2.24 CaO 0.61 0.60 5.42 1.53 9.54 9.60 2.22 0.66 0.41 0.40 5.99 1.25 0.13 0.13 7.73 1.54 K2O 4.17 4.16 3.07 0.28 0.47 0.48 5.73 2.71 2.52 2.50 3.63 0.84 2.10 2.07 3.85 1.45 Na2O 0.35 0.35 6.19 0.29 2.03 2.07 3.85 1.83 0.33 0.33 6.27 1.52 0.082 0.080 8.56 2.50 TiO2 0.65 0.66 5.29 0.45 0.91 0.92 4.86 1.31 0.97 0.96 4.79 0.51 0.51 0.51 5.64 0.46 BaO 0.048 0.050 9.41 4.49 0.007 0.007 13.63 1.10 0.045 0.046 9.58 1.96 0.035 0.036 10.07 1.45 MnO 0.021 0.020 11.24 3.50 0.21 0.21 6.98 0.19 0.058 0.057 9.18 1.86 0.061 0.063 9.00 2.78 P2O5 0.16 0.16 7.41 1.90 0.081 0.082 8.51 1.70 0.23 0.22 6.87 2.37 0.053 0.051 9.37 3.32 Cr2O3 0.014 0.015 11.94 3.14 0.021 0.020 11.24 4.98 0.010 0.0098 12.81 5.23 0.0061 0.0063 13.85 3.16 V2O5 0.015 0.016 11.78 3.36 0.049 0.053 9.32 6.64 0.020 0.019 11.35 5.26 0.011 0.011 12.60 4.44 Rb 0.020 0.021 11.19 3.41 0.0027 0.0029 15.84 6.90 0.018 0.017 11.55 3.47 0.0078 0.0082 13.22 4.88 Sr 0.0088 0.0090 13.01 2.18 0.015 0.014 11.97 3.76 0.0071 0.0068 13.67 4.38 0.0019 0.0018 17.17 4.25 Zr 0.0098 0.0096 12.86 2.26 0.0054 0.0057 14.10 4.86 0.027 0.028 10.58 3.37 0.028 0.027 10.58 2.04 Cu 0.0044 0.0042 14.87 4.95 0.0082 0.0084 13.17 2.77 0.0031 0.0032 15.58 4.52 0.0014 0.0015 17.76 3.66 Ni 0.0038 0.0037 15.19 1.80 0.011 0.012 12.41 4.62 0.0026 0.0027 16.03 4.63 0.0018 0.0019 16.97 6.25 单位:%. -
[1] 《岩石矿物分析》编委会. 岩石矿物分析: 第2分册[M]. 4版. 北京: 地质出版社, 2011: 1-3.
Editorial Board for Rock and Mineral Analysis. Analysis of rocks and minerals: Part 2[M]. 4th ed. Beijing: Geological Publishing House, 2011: 1-3. (in Chinese)
[2] 周存款, 袁永海. X射线荧光光谱法测定硅酸盐和高铁高钛铝土矿中主次组分[J]. 理化检验-化学分册, 2018, 54(3): 303-307. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201803015.htm
Zhou C K, Yuan Y H. Determination of major and minor components in silicate and bauxite with high content of iron and titanium by X-Ray fluorescence spectrometry[J]. Physical Testing and Chemical Analysis Part B-Chemical Analysis, 2018, 54(3): 303-307. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201803015.htm
[3] 祁昌炜, 朱杰勇, 王佳音, 等. 便携式X射线荧光元素分析仪的应用[J]. 地质与资源, 2013, 22(1): 64-66. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8922.shtml
Qi C W, Zhu J Y, Wang J Y, et al. Application of the portable XRF analyzer in sample testing[J]. Geology and Resources, 2013, 22(1): 64-66. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8922.shtml
[4] 李献华, 刘颖, 涂湘林, 等. 硅酸盐岩石化学组成的ICP-AES和ICP-MS准确测定: 酸溶与碱熔分解样品方法的对比[J]. 地球化学, 2002, 31(3): 289-294. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200203009.htm
Li X H, Liu Y, Tu X L, et al. Precise determination of chemical compositions in silicate rocks using ICP-AES and ICP-MS: A comparative study of sample digestion techniques of alkali fusion and acid dissolution[J]. Geochimica, 2002, 31(3): 289-294. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200203009.htm
[5] 陈玉明, 陈秀法. 阿根廷米纳毕戈塔斯地区1: 250000地球化学数据集[J]. 中国地质, 2018, 45(S2): 83-92, 107-118. doi: 10.12029/gc2018Z210
Chen Y M, Chen X F. Argentine Mina Pirquitas 1: 250000 geochemistry dataset[J]. Geology in China, 2018, 45(S2): 83-92, 107-118. doi: 10.12029/gc2018Z210
[6] 高志军, 陈静, 陈浩凤, 等. 熔融制样-X射线荧光光谱法测定硅酸盐和铝土矿中主次组分[J]. 冶金分析, 2015, 35(7): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201507015.htm
Gao Z J, Chen J, Chen H F, et al. Simultaneous determination of major and minor components in silicate and bauxite by X-ray fluorescence spectrometry with fusion sample preparation[J]. Metallurgical Analysis, 2015, 35(7): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201507015.htm
[7] 李国会, 卜维, 樊守忠. X射线荧光光谱法测定硅酸盐中硫等20个主、次、痕量元素[J]. 光谱学与光谱分析, 1994, 14(1): 105-110, 104. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN401.019.htm
Li G H, Bu W, Fan S Z. Determination of twenty major, minor and trace elements in silicate by XRF spectrometry[J]. Spectroscopy and Spectral Analysis, 1994, 14(1): 105-110, 104. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN401.019.htm
[8] 欧阳伦熬. X射线荧光光谱法测定多种铁矿和硅酸盐中主次量组分[J]. 岩矿测试, 2005, 24(4): 303-306. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200504014.htm
Ouyang L A. Determination of major and minor elements in iron ores and silicates by XRF spectrometry with fusion sample preparation technique[J]. Rock and Mineral Analysis, 2005, 24(4): 303-306. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200504014.htm
[9] 李迎春, 周伟, 王健, 等. X射线荧光光谱法测定高锶高钡的硅酸盐样品中主量元素[J]. 岩矿测试, 2013, 32(2): 249-253. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201302013.htm
Li Y C, Zhou W, Wang J, et al. Determination of major elements in silicate samples with high content strontium and barium by X-ray fluorescence spectrometry[J]. Rock and Mineral Analysis, 2013, 32(2): 249-253. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201302013.htm
[10] 袁伟哲, 田俊杰, 徐志坚, 等. X荧光光谱法测定硅酸盐中的主次量元素[J]. 吉林地质, 2015, 34(3): 116-119. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ201503025.htm
Yuan W Z, Tian J J, Xu Z J, et al. Determination of primary and secondary elements in silicate by X fluorescence spectrometry[J]. Jilin Geology, 2015, 34(3): 116-119. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ201503025.htm
[11] 周存款, 潘炜燕, 乔小芳, 等. 熔融制样-X射线荧光光谱法测定硅酸盐样品中主量元素[J]. 矿产与地质, 2017, 31(5): 1004-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201705025.htm
Zhou C K, Pan W Y, Qiao X F, et al. Determination of major elements in silicates by X-ray fluorescence spectrometry with fusion sample preparation[J]. Mineral Resources and Geology, 2017, 31(5): 1004-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201705025.htm
[12] 罗学辉. 熔融法-波长X射线荧光光谱法测定硅酸盐岩石中16种主次成份量[D]. 南昌: 东华理工大学, 2017: 18-19.
Luo X H. Determination of 16 major and minor elements in silicate rock by wavelength X-ray fluorescence spectrometry with sample fusion[D]. Nanchang: East China University of Technology, 2017: 18-19.
[13] 张振华, 赵朔, 曹峰. X射线荧光光谱法熔融制样测定硅酸盐样品中的主、次成分[J]. 实验室科学, 2013, 16(2): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKT201302005.htm
Zhang Z H, Zhao S, Cao F. Determination of major and minor elements in the samples of silicate rocks by XRF[J]. Laboratory Science, 2013, 16(2): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKT201302005.htm
[14] 周国兴, 赵恩好, 岳明新, 等. X射线荧光光谱法测试重晶石中的多元素[J]. 地质与资源, 2014, 23(3): 292-295. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8851.shtml
Zhou G X, Zhao E H, Yue M X, et al. Application of X-Ray fluorescence spectrometry in the multi-element test of barite[J]. Geology and Resources, 2014, 23(3): 292-295. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8851.shtml
[15] 李国会, 李小莉. X射线荧光光谱分析熔融法制样的系统研究[J]. 冶金分析, 2015, 35(7): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201507001.htm
Li G H, Li X L. Systematic study on the fusion sample preparation in X-ray fluorescence spectrometric analysis[J]. Metallurgical Analysis, 2015, 35(7): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201507001.htm
[16] 罗学辉, 苏建芝, 鹿青, 等. 高倍稀释熔融制样-X射线荧光光谱法测定铅锌矿中主次组分[J]. 冶金分析, 2014, 34(1): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201401008.htm
Luo X H, Su J Z, Lu Q, et al. Determination of major and minor components in lead-zinc ores by X-ray fluorescence spectrometry with high dilution fusion sample preparation[J]. Metallurgical Analysis, 2014, 34(1): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201401008.htm
[17] 罗立强, 詹秀春, 李国会. X射线荧光光谱分析[M]. 2版. 北京: 化学工业出版社, 2015: 130-135.
Luo L Q, Zhan X C, Li G H. X-ray fluorescence spectrometry[M]. 2nd ed. Beijing: Chemical Industry Press, 2015: 130-135.
[18] 张勤, 李国会, 樊守忠, 等. X射线荧光光谱法测定土壤和水系沉积物等样品中碳、氮、氟、氯、硫、溴等42种主次和痕量元素[J]. 分析试验室, 2008, 27(11): 51-57. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY200811016.htm
Zhang Q, Li G H, Fan S Z, et al. Study on determination of 42 major minor and trace elements in soil and stream sediment samples[J]. Chinese Journal of Analysis Laboratory, 2008, 27(11): 51-57. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY200811016.htm
[19] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 14506.28-2010硅酸盐岩石化学分析方法——第28部分: 16个主次成分量测定[S]. 北京: 中国标准出版社, 2011: 1-7.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 14506.28-2010 Methods for chemical analysis of silicate rocks-Part 28: Determination of 16 major and minor elements content[S]. Beijing: Standards Press of China, 2011: 1-7.
[20] 中华人民共和国国土资源部. DZ/T 0130-2006地质矿产实验室测试质量管理规范[S]. 北京: 中国标准出版社, 2006: 31-39.
Ministry of Land and Resources of the People's Republic of China. DZ/T 0130-2006 The specification of testing quality management for geological laboratories[S]. Beijing: Standards Press of China, 2006: 31-39.
-