DISCOVERY OF THE EARLY JURASSIC VOLCANIC ROCKS IN XINLIN AREA OF NORTHERN DAXINGANLING MOUNTAINS: Geological Implication
-
摘要:
大兴安岭北部新林地区战备村一带新发现早侏罗世酸性火山岩.共测试2个锆石LA-ICP-MS U-Pb年龄.第一个测年样品为绢英岩化流纹岩,谐和图上测点偏离谐和线右侧为典型的不谐和年龄,与谐和线相交年龄为192.0±1 Ma,MSWD=1.2,为流纹岩喷出后的冷却结晶年龄;第二个测试样品为弱硅化流纹岩,谐和年龄为178.0±1 Ma,系微量放射性Pb丢失的结果,其成岩时代为应与绢英岩化流纹岩时代相近.岩石化学及地球化学具有高Ti流纹岩和Ⅰ型流纹岩特征.流纹岩的Mg#值(0.43~0.73)及CIWP标准矿物中紫苏辉石含量(0.25%~0.96%)佐证了流纹岩是由基性岩浆的结晶-分异演化而来.
Abstract:The Early Jurassic acid volcanic rocks are newly discovered in Zhanbeicun Formation of Xinlin area in northern Daxinganling Mountains, from which two samples of zircon LA-ICP-MS U-Pb ages are determined. The first is sericitized rhyolite, with the testing point deviating to the right side of concordant curve on the concordia diagram-a typical discordant age, yielding the intersecting age with concordant curve of 192.0±1 Ma(MSWD=1.2), which is the cooling crystallization age of rhyolites after extrusion. The second one is weakly silicified rhyolite with a concordant age of 178.0±1 Ma, which is the result of the loss of radioactive trace element Pb, and the rock-forming age should be close to that of the sericitized rhyolite. The volcanic rocks are petrochemically and geochemically characterized by high Ti rhyolite and I-type rhyolite. The Mg# value of the rhyolite(0.43-0.73) and content of hypersthene in CIWP norm minerals (0.25%-0.96%) support that the rhyolite is derived from crystallization-differentiation of basic magma.
-
Key words:
- Early Jurassic /
- rhyolite /
- zircon age /
- geochemistry /
- Daxinganling Mountains
-
-
表 1 大兴安岭中生代火山岩地层对比新方案
Table 1. Correlation of the Mesozoic volcanic strata in Daxinganling Mountains
内蒙古自治区地质矿产局(1982) 黑龙江省地质矿产局(1982) 内蒙古自治区地质矿产局(1982) 内蒙古自治区地质矿产局(1996) 黑龙江省地质矿产局(1996) 张立东(2010) 邵积东(2010) 武警黄金第三支队(2012) 同位素测年及化石 大兴安岭中南部 大兴安岭北部 上侏罗统 欧肯河组 下白垩统 下白垩统 孤山镇组 114 Ma osestherlia 130 Ma 梅勒图组 伊列克得组 甘河组 伊列克得组 甘河组 甘河组 甘河组 甘河组 九峰山组 大磨拐河组 九峰山组 大磨拐河组 上库力组 光华组 上库力组 光华组 龙江组 梅勒图组 光华组 白音高老组 七一牧场组 龙江组 玄武岩组 龙江组 龙江组(玄武岩组) 木瑞组 上侏罗统 木瑞组 白音高老组 白音高老组 白音高老组 白音高老组 下白垩统要上侏罗统 白音高老组 135 MaNestoria150 Ma 玛尼吐组 吉祥峰组 吉祥峰组 吉祥峰组 玛尼吐组 玛尼吐组 玛尼吐组 玛尼吐组 满克头鄂博组 满克头鄂博组 满克头鄂博组 满克头鄂博组 满克头鄂博组 塔木兰沟组 塔木兰沟组 塔木兰沟组 土城子组 塔木兰沟组 塔木兰沟组 土城子组 中侏罗统 155~168 Ma 塔木兰沟组 塔木兰沟组 表 4 战备村组流纹岩主量元素特征表
Table 4. Contents of major elements in rhyolites from Zhanbeicun Formation
成分 本次研究 文献[19]数据 文献[20]数据 弱硅化流纹岩(PM004TC96) 绢英岩化流纹岩(PM004TC60) 流纹岩(SPM2TC50) 流纹岩(SPM13TC23) 流纹岩(SPM13TC45) 流纹岩(SPM13TC47) 流纹岩(SPM13TC51) 流纹岩(SPM13TC55) 流纹岩(D2148) SiO2 77.73 77.49 72.18 69.56 68.19 69.74 66.86 69.11 65.2 Al2O3 12.77 12.47 14.02 15.70 16.80 15.74 17.05 15.70 15.2 TiO2 0.13 0.10 0.43 0.38 0.36 0.39 0.47 0.43 0.63 Fe2O3 0.46 0.47 0.98 1.19 1.93 2.35 1.72 1.45 2.51 FeO 0.07 0.05 1.15 0.81 0.26 0.12 1.03 0.84 2.22 CaO 0.17 0.07 0.55 0.69 1.06 0.45 0.45 1.04 1.88 MgO 0.38 0.10 0.86 0.38 0.46 0.46 0.73 0.40 0.86 K2O 4.88 6.03 3.62 5.80 3.42 3.85 4.51 5.12 5.27 Na2O 1.92 2.12 4.52 4.55 6.15 5.39 5.46 4.65 4.06 MnO 0.02 0.02 0.07 0.06 0.08 0.09 0.12 0.09 0.08 P2O5 0.02 0.01 0.10 0.06 0.08 0.09 0.15 0.08 0.19 LOI 1.35 0.95 1.37 0.61 0.95 1.04 1.09 0.84 1.72 Total 99.89 99.89 99.85 99.77 99.74 99.71 99.74 99.76 99.82 K2O/Na2O 2.54 2.84 0.80 1.27 0.56 0.71 0.83 1.10 1.30 Na2O+K2O 6.80 8.15 8.13 10.35 9.57 9.24 9.97 9.77 9.33 Mg# 0.73 0.43 A/CNK 1.46 1.23 1.14 1.05 1.07 1.14 1.16 1.04 0.96 A/NK 1.51 1.25 1.24 1.14 1.22 1.21 1.23 1.19 1.23 表 5 战备村组火山岩稀土、微量元素特征表
Table 5. Contents of REEs and trace elements in rhyolites from Zhanbeicun Formation
样品编号 岩性 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm PM004TC96 弱硅化流纹岩 32.54 51.41 5.05 14.70 1.79 0.31 1.72 0.19 0.96 0.17 0.54 0.09 PM004TC60 绢英岩化流纹岩 23.93 37.60 3.76 11.30 1.56 0.27 1.32 0.15 0.69 0.12 0.42 0.06 样品编号 岩性 Yb Lu Y ΣREE LREE HREE L/H (La/Yb)N (La/Sm)N (Gd/Yb)N δEu δCe PM004TC96 弱硅化流纹岩 0.58 0.27 5.33 110.32 105.80 4.52 23.41 40.19 11.76 2.45 0.54 0.88 PM004TC60 绢英岩化流纹岩 0.47 0.20 4.01 81.84 78.42 3.42 22.96 36.87 9.92 2.34 0.57 0.87 样品编号 岩性 Rb Sr Ba Th U Nb Ta Zr Hf Co Ni Cr PM004TC96 弱硅化流纹岩 137.37 95.49 580.40 14.13 3.10 10.27 0.71 104.04 4.09 0.08 0.63 6.07 PM004TC60 绢英岩化流纹岩 155.80 32.17 666.20 9.14 3.24 5.00 0.39 72.30 3.01 0.21 0.85 6.13 样品编号 岩性 V Sc Li Cs W Bi Mo Cu Pb Zn Hg Ag PM004TC96 弱硅化流纹岩 6.44 3.04 8.44 2.62 0.40 0.05 0.50 5.65 32.49 19.00 0.02 0.03 PM004TC60 绢英岩化流纹岩 22.27 2.64 8.57 2.00 1.92 0.06 0.73 5.06 6.66 15.30 0.01 0.06 含量单位: 10-6. 表 6 流纹岩微量元素特征对比表
Table 6. Comparison of trace element characteristics between rhyolites of different regions
地区 大兴安岭 巴西南部 印度德干暗色岩系 韩国庆尚盆地 肯尼亚裂谷 岩石 高Ti流纹岩[24] 低Ti流纹岩[24] 战备村早侏罗世流纹岩 Parana流纹岩 流纹岩 流纹岩 流纹岩 Rb/Ba 0.007~0.28(0.14) 2.44~8.06(5.25) 0.24~0.24(0.24) 0.17~0.34(0.25) 0.07~0.19(0.13) 0.10~0.23(0.17) 30.6~408(219) Rb/Sr 0.39~1.74(1.07) 6.18~13.52(9.85) 1.44~4.84(3.14) 0.69~2.46(1.57) 0.02~2.64(1.30) 0.47~1.23(0.85) 72.5~383(228) Ba/Sr 3.89~12.0(7.93) 1.38~2.85(2.12) 6.08~20.71(13.39) 3.22~8.28(5.75) 2.60~18.0(10.20) 3.00~7.96(5.48) 0.39~3.13(1.76) Zr/Ba 0.12~0.30(0.18) 1.95~7.17(4.56) 0.18~0.11(0.15) 0.41~0.54(0.48) 0.34~1.12(0.73) 0.10~0.26(0.19) 68.9~1546(807) Nb/Ta 6.32~33.5(19.9) 11.4~13.9(12.7) 12.69~14.55(13.62) 11.1~14.7(12.9) 6.40~8.74(7.60) 12.3~14.7(13.5) La/Yb 12.1~18.3(15.3) 6.81~10.50(8.65) 56.03~51.40(53.71) 6.49~9.75(8.12) 4.51~16.5(10.5) 3.15~6.51(4.83) δEu 0.45~0.74(0.60) 0.05~0.20(0.13) 0.54~0.57(0.56) 0.57~0.70(0.64) 0.04~0.06(0.05) Ba (1112) (44.9) (623.3) (768) (1132) (861) (6.00) Sr (211) (20.0) (63.83) (164) (145) (171) (2.80) P (281) (120) (63.5) (1333) (516) (55.6) Ti (2398) (1019) (689.5) (6322) (1245) (1451) Co (3.27) (0.66) (0.15) (15.4) (101) (0.25) Ni (7.78) (3.49) (0.74) (6.83) (13.9) (20.4) Th (12.6) (26.5) (11.62) (13.9) (24.4) (9.00) (66.0) 注: 括号内为平均值; 含量单位10-6. -
[1] 表尚虎, 郑卫政, 周兴福. 大兴安岭北部锆石U-Pb年龄对额尔古纳地块构造归属的制约[J]. 地质学报, 2012, 86(8): 1262-1272. doi: 10.3969/j.issn.0001-5717.2012.08.009
Biao S H, Zheng W Z, Zhou X F. Zircon U-Pb age of the North Da Hinggan Mts., NE China and its constraint to attribute of the Ergun Block[J]. Acta Geologica Sinica, 2012, 86(8): 1262-1272. doi: 10.3969/j.issn.0001-5717.2012.08.009
[2] 武广. 大兴安岭北部区域成矿背景与有色、贵金属矿床成矿作用[D]. 长春: 吉林大学, 2005: 31-36.
Wu G. Metallogenic setting and metallogenesis of nonferrous-precious metals in northern Da Hinggan Mountain[D]. Changchun: Jilin University, 2005: 31-36.
[3] 孙广瑞, 李仰春, 张昱. 额尔古纳地块基底地质构造[J]. 地质与资源, 2002, 11(3): 129-139. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9735.shtml
Sun G R, Li Y C, Zhang Y. The basement tectonics of Ergun massif[J]. Geology and Resources, 2002, 11(3): 129-139. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9735.shtml
[4] Zorin Y A, Belichenko V G, Turutanov E K, et al. The East Siberia transect[J]. International Geology Review, 1995, 37(2): 154-175. doi: 10.1080/00206819509465398
[5] 黑龙江省地质矿产局. 黑龙江省区域地质志[M]. 北京: 地质出版社, 1993: 5-25.
Heilongjiang Bureau of Geology and Mineral Resources. Regional geology of Heilongjiang Province[M]. Beijing: Geological Publishing House, 1993: 5-25. (in Chinese)
[6] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1): 1-30. doi: 10.1016/j.jseaes.2010.11.014
[7] 黑龙江省地质矿产局. 黑龙江省区域地质志[M]. 北京: 地质出版社, 2019: 5-25.
Heilongjiang Bureau of Geology and Mineral Resources. Regional geology of Heilongjiang Province[M]. Beijing: Geological Publishing House, 2019: 5-25. (in Chinese)
[8] 赵海滨, 于庆文, 刘旭光, 等. 黑龙江新开岭变质核杂岩特征、隆升时间及与金的成矿关系[J]. 地球科学, 2004, 29(S1): 37-40.
Zhao H B, Yu Q W, Liu X G, et al. Characteristics, uplifting time and metallogenic relationship of Xinkailing metamorphic core complex in Heilongjiang Province[J]. Earth Sciences, 2004, 29(S1): 37-40.
[9] 周其林, 王献忠, 吉峰, 等. 大兴安岭中生代火山岩地层对比[J]. 地质论评, 2013, 59(6): 1077-1084. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201306009.htm
Zhou Q L, Wang X Z, Ji F, et al. Corresponding relations of Mesozoic volcanic formations in the Da Hinggan Mountains[J]. Geological Review, 2013, 59(6): 1077-1084. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201306009.htm
[10] 赵海滨, 莫宣学, 徐受民, 等. 黑龙江新开岭变质核杂岩的组成及其演化[J]. 地质科学, 2007, 42(1): 176-188. doi: 10.3321/j.issn:0563-5020.2007.01.015
Zhao H B, Mo X X, Xu S M, et al. Composition and evolution of the Xinkailing metamorphic core complexes in Heilongjiang Province[J]. Chinese Journal of Geology, 2007, 42(1): 176-188. doi: 10.3321/j.issn:0563-5020.2007.01.015
[11] 梁琛岳, 刘永江, 李伟, 等. 黑龙江嫩江地区科洛杂岩伸展构造特征[J]. 地质通报, 2011, 30(2/3): 291-299. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2011Z1015.htm
Liang C Y, Liu Y J, Li W, et al. Characteristics of extensional structure of Keluo complex in Nenjiang area, Heilongjiang, China[J]. Geological Bulletin of China, 2011, 30(2/3): 291-299. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2011Z1015.htm
[12] 梁琛岳, 刘永江, 李伟, 等. 黑龙江省嫩江地区科洛杂岩隆升时代[J]. 地质科学, 2012, 47(2): 360-375. doi: 10.3969/j.issn.0563-5020.2012.02.008
Liang C Y, Liu Y J, Li W, et al. Uplift age of Keluo complex at Nenjiang area, Heilongjiang Province[J]. Chinese Journal of Geology, 2012, 47(2): 360-375. doi: 10.3969/j.issn.0563-5020.2012.02.008
[13] 刘勃然, 李伟, 贾杰, 等. 大兴安岭北段嘎拉山伸展滑脱构造[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1142-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201404009.htm
Liu B R, Li W, Jia J, et al. Extensional detachment structure in Galashan, Northern Great Xing'an Ranges, NE China[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(4): 1142-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201404009.htm
[14] 申亮, 赵胜金, 于海洋, 等. 大兴安岭哈达陶勒盖组火山岩年龄、地球化学特征及其陆缘弧构造背景[J]. 中国地质, 2020, 47(4): 1041-1055. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202004011.htm
Shen L, Zhao S J, YU H Y, et al. Zircon age and geochemical characteristics of Hadataolegai Formation volcanic rocks in Da Hinggan Mountains and its continental marginal arc setting[J]. Geology in China, 2020, 47(4): 1041-1055. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202004011.htm
[15] Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79.
[16] Le Maitre R W, Bateman P D, Keller A, et al. A classification of igneous rocks and glossary of terms: Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks[M]. Oxford: Blackwell, 1989: 1-236.
[17] Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22(4): 247- 263.
[18] Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81.
[19] 李中会, 李阳, 李睿杰, 等. 满归地区早侏罗世岩浆作用及其地质意义[J]. 中国地质调查, 2020, 7(5): 54-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC202005007.htm
Li Z H, Li Y, Li R J, et al. Magmatic activity and its geological significance in Early Jurassic in Mangui area of Inner Mongolia[J]. Geological Survey of China, 2020, 7(5): 54-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC202005007.htm
[20] 乔牡冬, 孙加鹏, 李宇菡, 等. 大兴安岭新林区中生代流纹岩年代学、地球化学特征及其地质意义[J]. 地质与资源, 2018, 27(4): 324-336. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8475.shtml
Qiao M D, Sun J P, Li Y H, et al. Chronology, geochemistry and geological implication of the Mesozoic rhyolites in Xinlin area, Daxinganling Mountains[J]. Geology and Resources, 2018, 27(4): 324-336. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8475.shtml
[21] Boynton W V. Cosmochemistry of the rare earth elements: Meteorite studies[J]. Developments in Geochemistry, 1984, 2: 63-114.
[22] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
[23] 林强, 葛文春, 孙德有, 等. 大兴安岭中生代两类流纹岩与玄武岩的成因联系[J]. 长春科技大学学报, 2000, 30(4): 322-328. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200004002.htm
Lin Q, Ge W C, Sun D Y, et al. Genetic relationships between two types of Mesozoic rhyolite and basalts in Great Xing'an Ridge[J]. Journal of Changchun University of Science and Technology, 2000, 30(4): 322-328. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200004002.htm
[24] 葛文春, 林强, 孙德有, 等. 大兴安岭中生代两类流纹岩成因的地球化学研究[J]. 地球科学——中国地质大学学报, 2000, 25(2): 172-178. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200002012.htm
Ge W C, Lin Q, Sun D Y, et al. Geochemical research into origins of two types of Mesozoic rhyolites in Daxing'anling[J]. Earth Science-Journal of China University of Geosciences, 2000, 25(2): 172-178. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200002012.htm
[25] 于跃江, 赵忠海, 杨欣欣, 等. 大兴安岭北段漠河前陆盆地早侏罗世火山岩时代的厘定[J]. 中国地质, 2021, 48(2): 580-592. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102017.htm
Yu Y J, Zhao Z H, Yang X X, et al. Dating of Early Jurassic volcanic rocks in the Mohe foreland basin of northern Greater Khingan Mountains, Northeast China[J]. Geology in China, 2021, 48(2): 580-592. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102017.htm
-