北京延庆硅化木的矿物学特征分析

程素珍. 北京延庆硅化木的矿物学特征分析[J]. 地质与资源, 2022, 31(1): 21-27. doi: 10.13686/j.cnki.dzyzy.2022.01.003
引用本文: 程素珍. 北京延庆硅化木的矿物学特征分析[J]. 地质与资源, 2022, 31(1): 21-27. doi: 10.13686/j.cnki.dzyzy.2022.01.003
CHENG Su-zhen. MINERALOGICAL CHARACTERISTICS OF SILICIFIED WOOD IN YANQING DISTRICT OF BEIJING[J]. Geology and Resources, 2022, 31(1): 21-27. doi: 10.13686/j.cnki.dzyzy.2022.01.003
Citation: CHENG Su-zhen. MINERALOGICAL CHARACTERISTICS OF SILICIFIED WOOD IN YANQING DISTRICT OF BEIJING[J]. Geology and Resources, 2022, 31(1): 21-27. doi: 10.13686/j.cnki.dzyzy.2022.01.003

北京延庆硅化木的矿物学特征分析

  • 基金项目:
    中国地质调查局项目"华北地区重要地质遗迹调查(北京)"(编号1212011220044);北京市国土局项目"北京市地质遗迹详查评价及保护对策研究"(编号0747-1361SITCN217)
详细信息
    作者简介: 程素珍(1981-), 女, 博士, 高级工程师, 从事古生物化石等地质遗迹保护研究和地质灾害防治工作, 通信地址北京市通州区潞城镇朗清园二区6号楼1单元403, E-mail//78413450@qq.com
  • 中图分类号: P575;Q914.21

MINERALOGICAL CHARACTERISTICS OF SILICIFIED WOOD IN YANQING DISTRICT OF BEIJING

  • 通过X射线荧光、红外光谱和X射线衍射等检测方法分析了延庆硅化木的矿物学特征.结果表明:2个不同植物种属但在同一埋藏地形成硅化木标本成因相似,其颜色与所含元素种类及含量密切相关.X射线衍射分析表明,不同颜色和植物种属的硅化木主要组成物相一致,为SiO2,其他矿物极其微量.2个硅化木标本的红外吸收谱带基本一致,均显示典型的石英质玉石红外吸收光谱,且含有少量吸附水.偏光显微镜下显示2个硅化木标本的主要矿物成分均为隐晶质石英.延庆土城子组硅化木的沉积环境为较浅的湖沼沉积,当时处于半干旱-半湿润的气候条件下,并伴随火山活动.

  • 加载中
  • 图 1  延庆晚侏罗世硅化木外部形态及木材解剖构造特征

    Figure 1. 

    图 2  标本DYSYQGHM-1的XRD光谱

    Figure 2. 

    图 3  标本DYSYQGHM-2的XRD光谱

    Figure 3. 

    图 4  标本DYSYQGHM-1红外图谱

    Figure 4. 

    图 5  标本DYSYQGHM-2红外图谱

    Figure 5. 

    图 6  硅化木标本横切面偏光显微镜照片

    Figure 6. 

    表 1  标本DYSYQGHM-1的X射线荧光光谱分析SQX计算结果

    Table 1.  XRF spectral analysis results of specimen DYSYQGHM-1

    序号 组分 结果 检测限
    1 C 2.54 0.02031
    2 N 0.220 0.05880
    3 O 54.5 0.35155
    4 Na 0.0405 0.00323
    5 Mg 0.0374 0.00433
    6 Al 0.153 0.00202
    7 Si 41.9 0.00899
    8 P 0.0036 0.00082
    9 S 0.0362 0.00109
    10 Cl 0.0115 0.00295
    11 K 0.0235 0.00092
    12 Ca 0.364 0.00113
    13 Mn 0.0253 0.00172
    14 Fe 0.154 0.00136
    15 Ni 0.0049 0.00086
    16 Zn 0.0034 0.00066
    17 Sr 0.0018 0.00041
    单位: %(质量分数); 分析方法: C-U-20.
    下载: 导出CSV

    表 2  标本DYSYQGHM-2的X射线荧光光谱分析SQX计算结果

    Table 2.  XRF spectral analysis results of specimen DYSYQGHM-2

    序号 组分 结果 检测限
    1 C 3.92 0.02186
    2 N 0.197 0.06159
    3 O 53.9 0.35014
    4 Na 0.0422 0.00316
    5 Mg 0.0353 0.00429
    6 Al 0.154 0.00202
    7 Si 41.3 0.00888
    8 P 0.0035 0.00073
    9 S 0.0394 0.00106
    10 K 0.0312 0.00091
    11 Ca 0.168 0.00110
    12 Mn 0.0140 0.00174
    13 Fe 0.249 0.00140
    14 Ni 0.0020 0.00088
    15 Sr 0.0011 0.00041
    16 Ba 0.0196 0.00474
    单位: %(质量分数); 分析方法: C-U-20.
    下载: 导出CSV

    表 3  标本DYSYQGHM-1的XRD衍射分析结果

    Table 3.  XRD results of specimen DYSYQGHM-1

    序号 衍射角2θ/(°) 晶面间距d/Ả 背底强度 衍射峰强度 相对强度/% 半高宽
    1 20.781 4.2709 232 8125 18.7 0.182
    2 26.562 3.3531 243 43471 100 0.181
    3 36.48 2.461 104 2804 6.4 0.2
    4 39.383 2.2861 110 2776 6.4 0.212
    5 40.221 2.2403 103 1311 3 0.195
    6 42.38 2.1311 107 1907 4.4 0.209
    7 45.721 1.9828 108 1342 3.1 0.186
    8 50.061 1.8206 118 4868 11.2 0.226
    9 54.8 1.6738 89 1504 3.5 0.219
    10 55.242 1.6615 88 648 1.5 0.287
    11 59.9 1.5429 93 2928 6.7 0.248
    12 63.959 1.4545 76 603 1.4 0.226
    13 67.697 1.3829 102 1798 4.1 0.317
    14 68.062 1.3764 150 2650 6.1 0.627
    15 68.221 1.3736 164 2536 5.8 0.519
    下载: 导出CSV

    表 4  标本DYSYQGHM-2的XRD衍射分析结果

    Table 4.  XRD results of specimen DYSYQGHM-2

    序号 衍射角2θ/(°) 晶面间距d/Ả 背底强度 衍射峰强度 相对强度/% 半高宽
    1 20.837 4.2595 270 8766 19.5 0.19
    2 26.618 3.3461 298 45016 100 0.193
    3 36.519 2.4585 125 2925 6.5 0.202
    4 39.438 2.283 119 3167 7 0.201
    5 40.278 2.2373 115 1264 2.8 0.223
    6 42.438 2.1283 101 2135 4.7 0.218
    7 45.778 1.9805 79 1507 3.3 0.277
    8 50.118 1.8186 123 4898 10.9 0.247
    9 54.822 1.6732 86 1343 3 0.372
    10 55.301 1.6598 106 637 1.4 0.331
    11 57.226 1.6085 74 76 0.2 0.219
    12 59.937 1.5421 92 3079 6.8 0.274
    13 63.982 1.454 85 558 1.2 0.255
    14 65.664 1.4207 94 113 0.3 0.163
    15 67.7 1.3829 99 1865 4.1 0.456
    16 68.1 1.3757 152 2634 5.9 0.674
    17 68.241 1.3732 97 2560 5.7 0.592
    下载: 导出CSV
  • [1]

    王加恩, 王振, 刘远栋, 等. 浙江衢州硅化木埋藏时限及生态环境分析[J]. 地层学杂志, 2019, 43(3): 315-323. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201903008.htm

    Wang J E, Wang Z, Liu Y D, et al. Burial time constrain and ecological environment analysis of the silicified wood in Quzhou, Zhejiang[J]. Journal of Stratigraphy, 2019, 43(3): 315-323. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201903008.htm

    [2]

    蒋子堃, 王永栋, 田宁, 等. 辽西北票中晚侏罗世髫髻山组木化石的古气候、古环境和古生态意义[J]. 地质学报, 2016, 90(8): 1669-1678. doi: 10.3969/j.issn.0001-5717.2016.08.002

    Jiang Z K, Wang Y D, Tian N, et al. Paleoclimate and paleoenvironment implications of the Middle-Late Jurassic Tiaojishan Formation, western Liaoning Province: Evidence from fossil wood data[J]. Acta Geologica Sinica, 2016, 90(8): 1669-1678. doi: 10.3969/j.issn.0001-5717.2016.08.002

    [3]

    邓胜徽. 中生代主要植物化石的古气候指示意义[J]. 古地理学报, 2007, 9(6): 559-574. doi: 10.3969/j.issn.1671-1505.2007.06.001

    Deng S H. Palaeoclimatic implications of the main fossil plants of the Mesozoic[J]. Journal of Palaeogeography, 2007, 9(6): 559-574. doi: 10.3969/j.issn.1671-1505.2007.06.001

    [4]

    肖良, 漆亚玲, 马文忠, 等. 吐哈盆地北缘中侏罗世植物化石稳定碳同位素的古环境意义[J]. 沉积学报, 2017, 35(3): 489-498.

    Xiao L, Qi Y L, Ma W Z, et al. Stable carbon isotope of Middle Jurassic plant fossils in the north edge of Turpan-Hami Basin, Xinjiang and their palaeoenvironmental implications[J]. Acta Sedimentologica Sinica, 2017, 35(3): 489-498.

    [5]

    程业明, 扆铁梅, 李承森. 浙江宁海早上新世枫香树属和栎属化石木及其古环境意义[J]. 古地理学报, 2013, 15(1): 105-112.

    Cheng Y M, Yi T M, Li C S. Identification of the early Early Pliocene fossil woods from Ninghai in Zhejiang Province and its palaeoenvironmental implications[J]. Journal of Palaeogeography, 2013, 15(1): 105-112.

    [6]

    张元福, 魏小洁, 徐杰, 等. 北京延庆硅化木公园地质剖面陆相层序地层特征分析[J]. 地学前缘, 2012, 19(1): 68-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201201010.htm

    Zhang Y F, Wei X J, Xu J, et al. Continental sequence stratigraphy analysis of "Fossil Wood" Geological Park Section in Yanqing County, Beijing[J]. Earth Science Frontiers, 2012, 19(1): 68-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201201010.htm

    [7]

    席晓光. 朝阳硅化木的矿物成份分析及宝石特征[J]. 辽宁工程技术大学学报, 2007, 26(3): 464-466. doi: 10.3969/j.issn.1008-0562.2007.03.045

    Xi X G. Mineral composition analysis of petrified wood in Chaoyang and study on its features[J]. Journal of Liaoning Technical University, 2007, 26(3): 464-466. doi: 10.3969/j.issn.1008-0562.2007.03.045

    [8]

    段淑英. 北京硅化木林[J]. 植物学报, 1986, 28(3): 331-335. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWXB198603017.htm

    Duan S Y. A petrified forest from Beijing[J]. Journal of Integrative Plant Biology, 1986, 28(3): 331-335. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWXB198603017.htm

    [9]

    段淑英. 中国东北辽宁省西部几种中生代化石木[J]. 植物学报, 2000, 42(2): 207-213. doi: 10.3321/j.issn:1672-9072.2000.02.017

    Duan S Y. Several fossil woods from Mesozoic of western Liaoning Province, Northeast China[J]. Acta Botanica Sinica, 2000, 42(2): 207-213. doi: 10.3321/j.issn:1672-9072.2000.02.017

    [10]

    邓建国, 王丰平, 谢显明. 利用XRD, XRF, FT-IR, RS, SEM和DSC分析綦江木化石及围岩[J]. 四川理工学院学报(自然科学版), 2018, 31(5): 1-8.

    Deng J G, Wang F P, Xie X M. Analysis of wood fossils and surrounding rocks from Qijiang region by XRD, XRF, FT-IR, RS, SEM and DSC[J]. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 2018, 31(5): 1-8.

    [11]

    陈全莉, 周冠敏, 尹作为. 珊瑚化石的红外光谱及XRD研究[J]. 光谱学与光谱分析, 2012, 32(8): 2246-2249. doi: 10.3964/j.issn.1000-0593(2012)08-2246-04

    Chen Q L, Zhou G M, Yin Z W. Infrared spectroscopy and XRD studies of coral fossils[J]. Spectroscopy and Spectral Analysis, 2012, 32(8): 2246-2249. doi: 10.3964/j.issn.1000-0593(2012)08-2246-04

    [12]

    Shi X, Sun Y W, Huang R. Fossil woods from the Early Pennsylvanian Karamaili area, Xinjiang, Northwest China[J]. Acta Geologica Sinica (English Edition), 2020, 94(5): 1716-1717. doi: 10.1111/1755-6724.14592

    [13]

    Jiang Z K, Wang Y D, Tian N, et al. The Jurassic fossil wood diversity from western Liaoning, NE China[J]. Journal of Palaeogeography, 2019, 8(1): 1. doi: 10.1186/s42501-018-0018-y

    [14]

    Piga G, Santos-Cubedo A, Brunetti A, et al. A multi-technique approach by XRD, XRF, FT-IR to characterize the diagenesis of dinosaur bones from Spain[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 310(1/2): 92-107.

    [15]

    Yoon C J, Kim K W. Anatomical descriptions of silicified woods from Madagascar and Indonesia by scanning electron microscopy[J]. Micron, 2008, 39(7): 825-831. doi: 10.1016/j.micron.2007.12.011

    [16]

    张跃峰, 丘志力, 程银鹰, 等. 广东省石英质"台山玉"矿物谱学及其标型特征研究[J]. 光谱学与光谱分析, 2020, 40(3): 956-960.

    Zhang Y F, Qiu Z L, Cheng Y Y, et al. Spectral and typomorphic characteristics of quartzose jade from Taishan, Guangdong Province[J]. Spectroscopy and Spectral Analysis, 2020, 40(3): 956-960.

    [17]

    李月彤, 权晓云, 施光海. 新疆奇台和缅甸蒲甘硅化木的宝石学特征[J]. 宝石和宝石学杂志, 2016, 18(2): 26-33. doi: 10.3969/j.issn.1008-214X.2016.02.004

    Li Y T, Quan X Y, Shi G H. Gemmological characteristic of petrified wood from Qitai, Xinjiang and Pagan, Burma[J]. Journal of Gems & Gemmology, 2016, 18(2): 26-33. doi: 10.3969/j.issn.1008-214X.2016.02.004

    [18]

    王亚平, 许春雪, 王苏明. 树木年轮与其根部土壤化学元素含量的相关性[J]. 地质通报, 2005, 24(10/11): 952-956. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2005Z1013.htm

    Wang Y P, Xu C X, Wang S M. Correlation between chemical element contents in tree rings and those in soils near tree roots in the southern suburbs of Beijing, China[J]. Geological Bulletin of China, 2005, 24(10/11): 952-956. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2005Z1013.htm

    [19]

    周维丽. 硅化木的鉴定特征、成因与分类评价研究[J]. 中山大学研究生学刊(自然科学、医学版), 2014, 35(1): 8-13.

    Zhou W L. The identification characteristics, causes and classification evaluation research of silicified wood[J]. Journal of the Graduates Sun Yat-Sen University (Natural Sciences, Medicine), 2014, 35(1): 8-13.

    [20]

    王义昭. 缅甸硅化木("树化玉")的成因[J]. 地质通报, 2011, 30(10): 1628-1637. doi: 10.3969/j.issn.1671-2552.2011.10.017

    Wang Y Z. The genesis of silicified wood (Shuhuayu) of Myanmar[J]. Geological Bulletin of China, 2011, 30(10): 1628-1637. doi: 10.3969/j.issn.1671-2552.2011.10.017

    [21]

    张天乐, 王宗良, 胡云中. 腾冲现代热泉系统硅华的矿物学特征及其地质意义[J]. 岩石矿物学杂志, 1997, 16(2): 170-178.

    Zhang T L, Wang Z L, Hu Y Z. Mineralogy of geyserite from the Tengchong active hot spring system and its geological implications[J]. Acta Petrologica et Mineralogica, 1997, 16(2): 170-178.

    [22]

    法默V C. 矿物的红外光谱[M]. 应育浦, 等译. 北京: 科学出版社, 1982: 304.

    Farmer V C. Infrared spectrum of minerals[M]. Ying Y P, et al. trans. Beijing: Science Press, 1982: 304. (in Chinese)

    [23]

    陈全莉, 袁心强, 贾璐. 台湾蓝玉髓的振动光谱表征[J]. 光谱学与光谱分析, 2011, 31(6): 1549-1551. doi: 10.3964/j.issn.1000-0593(2011)06-1549-03

    Chen Q L, Yuan X Q, Jia L. Study on the vibrational spectra characters of Taiwan blue chalcedony[J]. Spectroscopy and Spectral Analysis, 2011, 31(6): 1549-1551. doi: 10.3964/j.issn.1000-0593(2011)06-1549-03

    [24]

    余炼钢, 张烨. 两块相似石英质宝石的谱学鉴别及启示[J]. 超硬材料工程, 2020, 32(4): 62-65. doi: 10.3969/j.issn.1673-1433.2020.04.015

    Yu L G, Zhang Y. Spectrographic identification of two similar quartz gemstones and its enlightenment[J]. Superhard Material Engineering, 2020, 32(4): 62-65. doi: 10.3969/j.issn.1673-1433.2020.04.015

    [25]

    雷芳芳. 缅甸硅化木与云南硅化木的岩石学特征对比研究[J]. 景德镇学院学报, 2020, 35(6): 61-64. doi: 10.3969/j.issn.1008-8458.2020.06.026

    Lei F F. A comparative study on the petrological characteristics of petrified wood from Burma and Yunnan[J]. Journal of Jingdezhen University, 2020, 35(6): 61-64. doi: 10.3969/j.issn.1008-8458.2020.06.026

    [26]

    贺瑾瑞, 焦润成, 南赟, 等. 北京延庆千家店盆地土城子组古生物化石及古气候沉积环境——延庆地区首次发现疑似恐龙骨骼化石[J]. 地质通报, 2017, 36(8): 1319-1329. doi: 10.3969/j.issn.1671-2552.2017.08.002

    He J R, Jiao R C, Nan Y, et al. A discussion on Tuchenzi fossils and paleoclimate sedimentary environment in Qianjiadian basin of Yanqing County: Suspected dinosaur bones discovered for the first time in Yanqing, Beijing[J]. Geological Bulletin of China, 2017, 36(8): 1319-1329. doi: 10.3969/j.issn.1671-2552.2017.08.002

    [27]

    Tian N, Xie A W, Wang Y D, et al. New records of Jurassic petrified wood in Jianchang of western Liaoning, China and their palaeoclimate implications[J]. Science China Earth Sciences, 2015, 58(12): 2154-2164. doi: 10.1007/s11430-015-5208-1

    [28]

    Jiang Z K, Wu H, Tian N, et al. A new species of conifer wood Brachyoxylon from the Cretaceous of eastern China and its paleoclimate significance[J]. Historical Biology, 2021, 33(10): 1989-1995. doi: 10.1080/08912963.2020.1755282

    [29]

    何情, 张建平, 邢立达, 等. 北京延庆千家店地区土城子组恐龙足迹点沉积环境[J]. 地质通报, 2015, 34(9): 1726-1734. doi: 10.3969/j.issn.1671-2552.2015.09.014

    He Q, Zhang J P, Xing L D, et al. Sedimentary environment of Tuchengzi Formation dinosaur track site in Qianjiadian area, Yanqing County, Beijing[J]. Geological Bulletin of China, 2015, 34(9): 1726-1734. doi: 10.3969/j.issn.1671-2552.2015.09.014

  • 加载中

(6)

(4)

计量
  • 文章访问数:  2060
  • PDF下载数:  197
  • 施引文献:  0
出版历程
收稿日期:  2021-09-26
修回日期:  2021-10-19
刊出日期:  2022-02-25

目录