MINERALOGICAL CHARACTERISTICS OF SILICIFIED WOOD IN YANQING DISTRICT OF BEIJING
-
摘要:
通过X射线荧光、红外光谱和X射线衍射等检测方法分析了延庆硅化木的矿物学特征.结果表明:2个不同植物种属但在同一埋藏地形成硅化木标本成因相似,其颜色与所含元素种类及含量密切相关.X射线衍射分析表明,不同颜色和植物种属的硅化木主要组成物相一致,为SiO2,其他矿物极其微量.2个硅化木标本的红外吸收谱带基本一致,均显示典型的石英质玉石红外吸收光谱,且含有少量吸附水.偏光显微镜下显示2个硅化木标本的主要矿物成分均为隐晶质石英.延庆土城子组硅化木的沉积环境为较浅的湖沼沉积,当时处于半干旱-半湿润的气候条件下,并伴随火山活动.
Abstract:The mineralogical characteristics of silicified wood in Yanqing are analyzed by the test methods of X-ray fluorescence (XRF), infrared spectroscopy (IR) and X-ray diffraction (XRD). The results show that the samples of silicified wood of two different plant species but formed in the same burial site are of similar origin, and their colors are closely related to the types and contents of elements in the silicified wood. The XRD analysis indicates that the main compositions of silicified wood with different colors and plant species are consistent, i.e. SiO2, with small traces of other minerals. The infrared absorption bands of the two silicified wood specimens are basically the same, showing typical quartzite jade infrared absorption spectrum and containing a small amount of adsorbed water. The main mineral composition of the two specimens are cryptocrystalline quartz under the polarized microscope. The sedimentary environment of silicified wood in Tuchengzi Formation of Yanqing was shallow lacustrine deposit in semiarid-semihumid climate, accompanied by volcanic activity.
-
Key words:
- silicified wood /
- mineralogy /
- XRF /
- infrared adsorption spectrum /
- X-ray diffraction /
- Yanqing District of Beijing
-
-
表 1 标本DYSYQGHM-1的X射线荧光光谱分析SQX计算结果
Table 1. XRF spectral analysis results of specimen DYSYQGHM-1
序号 组分 结果 检测限 1 C 2.54 0.02031 2 N 0.220 0.05880 3 O 54.5 0.35155 4 Na 0.0405 0.00323 5 Mg 0.0374 0.00433 6 Al 0.153 0.00202 7 Si 41.9 0.00899 8 P 0.0036 0.00082 9 S 0.0362 0.00109 10 Cl 0.0115 0.00295 11 K 0.0235 0.00092 12 Ca 0.364 0.00113 13 Mn 0.0253 0.00172 14 Fe 0.154 0.00136 15 Ni 0.0049 0.00086 16 Zn 0.0034 0.00066 17 Sr 0.0018 0.00041 单位: %(质量分数); 分析方法: C-U-20. 表 2 标本DYSYQGHM-2的X射线荧光光谱分析SQX计算结果
Table 2. XRF spectral analysis results of specimen DYSYQGHM-2
序号 组分 结果 检测限 1 C 3.92 0.02186 2 N 0.197 0.06159 3 O 53.9 0.35014 4 Na 0.0422 0.00316 5 Mg 0.0353 0.00429 6 Al 0.154 0.00202 7 Si 41.3 0.00888 8 P 0.0035 0.00073 9 S 0.0394 0.00106 10 K 0.0312 0.00091 11 Ca 0.168 0.00110 12 Mn 0.0140 0.00174 13 Fe 0.249 0.00140 14 Ni 0.0020 0.00088 15 Sr 0.0011 0.00041 16 Ba 0.0196 0.00474 单位: %(质量分数); 分析方法: C-U-20. 表 3 标本DYSYQGHM-1的XRD衍射分析结果
Table 3. XRD results of specimen DYSYQGHM-1
序号 衍射角2θ/(°) 晶面间距d/Ả 背底强度 衍射峰强度 相对强度/% 半高宽 1 20.781 4.2709 232 8125 18.7 0.182 2 26.562 3.3531 243 43471 100 0.181 3 36.48 2.461 104 2804 6.4 0.2 4 39.383 2.2861 110 2776 6.4 0.212 5 40.221 2.2403 103 1311 3 0.195 6 42.38 2.1311 107 1907 4.4 0.209 7 45.721 1.9828 108 1342 3.1 0.186 8 50.061 1.8206 118 4868 11.2 0.226 9 54.8 1.6738 89 1504 3.5 0.219 10 55.242 1.6615 88 648 1.5 0.287 11 59.9 1.5429 93 2928 6.7 0.248 12 63.959 1.4545 76 603 1.4 0.226 13 67.697 1.3829 102 1798 4.1 0.317 14 68.062 1.3764 150 2650 6.1 0.627 15 68.221 1.3736 164 2536 5.8 0.519 表 4 标本DYSYQGHM-2的XRD衍射分析结果
Table 4. XRD results of specimen DYSYQGHM-2
序号 衍射角2θ/(°) 晶面间距d/Ả 背底强度 衍射峰强度 相对强度/% 半高宽 1 20.837 4.2595 270 8766 19.5 0.19 2 26.618 3.3461 298 45016 100 0.193 3 36.519 2.4585 125 2925 6.5 0.202 4 39.438 2.283 119 3167 7 0.201 5 40.278 2.2373 115 1264 2.8 0.223 6 42.438 2.1283 101 2135 4.7 0.218 7 45.778 1.9805 79 1507 3.3 0.277 8 50.118 1.8186 123 4898 10.9 0.247 9 54.822 1.6732 86 1343 3 0.372 10 55.301 1.6598 106 637 1.4 0.331 11 57.226 1.6085 74 76 0.2 0.219 12 59.937 1.5421 92 3079 6.8 0.274 13 63.982 1.454 85 558 1.2 0.255 14 65.664 1.4207 94 113 0.3 0.163 15 67.7 1.3829 99 1865 4.1 0.456 16 68.1 1.3757 152 2634 5.9 0.674 17 68.241 1.3732 97 2560 5.7 0.592 -
[1] 王加恩, 王振, 刘远栋, 等. 浙江衢州硅化木埋藏时限及生态环境分析[J]. 地层学杂志, 2019, 43(3): 315-323. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201903008.htm
Wang J E, Wang Z, Liu Y D, et al. Burial time constrain and ecological environment analysis of the silicified wood in Quzhou, Zhejiang[J]. Journal of Stratigraphy, 2019, 43(3): 315-323. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201903008.htm
[2] 蒋子堃, 王永栋, 田宁, 等. 辽西北票中晚侏罗世髫髻山组木化石的古气候、古环境和古生态意义[J]. 地质学报, 2016, 90(8): 1669-1678. doi: 10.3969/j.issn.0001-5717.2016.08.002
Jiang Z K, Wang Y D, Tian N, et al. Paleoclimate and paleoenvironment implications of the Middle-Late Jurassic Tiaojishan Formation, western Liaoning Province: Evidence from fossil wood data[J]. Acta Geologica Sinica, 2016, 90(8): 1669-1678. doi: 10.3969/j.issn.0001-5717.2016.08.002
[3] 邓胜徽. 中生代主要植物化石的古气候指示意义[J]. 古地理学报, 2007, 9(6): 559-574. doi: 10.3969/j.issn.1671-1505.2007.06.001
Deng S H. Palaeoclimatic implications of the main fossil plants of the Mesozoic[J]. Journal of Palaeogeography, 2007, 9(6): 559-574. doi: 10.3969/j.issn.1671-1505.2007.06.001
[4] 肖良, 漆亚玲, 马文忠, 等. 吐哈盆地北缘中侏罗世植物化石稳定碳同位素的古环境意义[J]. 沉积学报, 2017, 35(3): 489-498.
Xiao L, Qi Y L, Ma W Z, et al. Stable carbon isotope of Middle Jurassic plant fossils in the north edge of Turpan-Hami Basin, Xinjiang and their palaeoenvironmental implications[J]. Acta Sedimentologica Sinica, 2017, 35(3): 489-498.
[5] 程业明, 扆铁梅, 李承森. 浙江宁海早上新世枫香树属和栎属化石木及其古环境意义[J]. 古地理学报, 2013, 15(1): 105-112.
Cheng Y M, Yi T M, Li C S. Identification of the early Early Pliocene fossil woods from Ninghai in Zhejiang Province and its palaeoenvironmental implications[J]. Journal of Palaeogeography, 2013, 15(1): 105-112.
[6] 张元福, 魏小洁, 徐杰, 等. 北京延庆硅化木公园地质剖面陆相层序地层特征分析[J]. 地学前缘, 2012, 19(1): 68-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201201010.htm
Zhang Y F, Wei X J, Xu J, et al. Continental sequence stratigraphy analysis of "Fossil Wood" Geological Park Section in Yanqing County, Beijing[J]. Earth Science Frontiers, 2012, 19(1): 68-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201201010.htm
[7] 席晓光. 朝阳硅化木的矿物成份分析及宝石特征[J]. 辽宁工程技术大学学报, 2007, 26(3): 464-466. doi: 10.3969/j.issn.1008-0562.2007.03.045
Xi X G. Mineral composition analysis of petrified wood in Chaoyang and study on its features[J]. Journal of Liaoning Technical University, 2007, 26(3): 464-466. doi: 10.3969/j.issn.1008-0562.2007.03.045
[8] 段淑英. 北京硅化木林[J]. 植物学报, 1986, 28(3): 331-335. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWXB198603017.htm
Duan S Y. A petrified forest from Beijing[J]. Journal of Integrative Plant Biology, 1986, 28(3): 331-335. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWXB198603017.htm
[9] 段淑英. 中国东北辽宁省西部几种中生代化石木[J]. 植物学报, 2000, 42(2): 207-213. doi: 10.3321/j.issn:1672-9072.2000.02.017
Duan S Y. Several fossil woods from Mesozoic of western Liaoning Province, Northeast China[J]. Acta Botanica Sinica, 2000, 42(2): 207-213. doi: 10.3321/j.issn:1672-9072.2000.02.017
[10] 邓建国, 王丰平, 谢显明. 利用XRD, XRF, FT-IR, RS, SEM和DSC分析綦江木化石及围岩[J]. 四川理工学院学报(自然科学版), 2018, 31(5): 1-8.
Deng J G, Wang F P, Xie X M. Analysis of wood fossils and surrounding rocks from Qijiang region by XRD, XRF, FT-IR, RS, SEM and DSC[J]. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 2018, 31(5): 1-8.
[11] 陈全莉, 周冠敏, 尹作为. 珊瑚化石的红外光谱及XRD研究[J]. 光谱学与光谱分析, 2012, 32(8): 2246-2249. doi: 10.3964/j.issn.1000-0593(2012)08-2246-04
Chen Q L, Zhou G M, Yin Z W. Infrared spectroscopy and XRD studies of coral fossils[J]. Spectroscopy and Spectral Analysis, 2012, 32(8): 2246-2249. doi: 10.3964/j.issn.1000-0593(2012)08-2246-04
[12] Shi X, Sun Y W, Huang R. Fossil woods from the Early Pennsylvanian Karamaili area, Xinjiang, Northwest China[J]. Acta Geologica Sinica (English Edition), 2020, 94(5): 1716-1717. doi: 10.1111/1755-6724.14592
[13] Jiang Z K, Wang Y D, Tian N, et al. The Jurassic fossil wood diversity from western Liaoning, NE China[J]. Journal of Palaeogeography, 2019, 8(1): 1. doi: 10.1186/s42501-018-0018-y
[14] Piga G, Santos-Cubedo A, Brunetti A, et al. A multi-technique approach by XRD, XRF, FT-IR to characterize the diagenesis of dinosaur bones from Spain[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 310(1/2): 92-107.
[15] Yoon C J, Kim K W. Anatomical descriptions of silicified woods from Madagascar and Indonesia by scanning electron microscopy[J]. Micron, 2008, 39(7): 825-831. doi: 10.1016/j.micron.2007.12.011
[16] 张跃峰, 丘志力, 程银鹰, 等. 广东省石英质"台山玉"矿物谱学及其标型特征研究[J]. 光谱学与光谱分析, 2020, 40(3): 956-960.
Zhang Y F, Qiu Z L, Cheng Y Y, et al. Spectral and typomorphic characteristics of quartzose jade from Taishan, Guangdong Province[J]. Spectroscopy and Spectral Analysis, 2020, 40(3): 956-960.
[17] 李月彤, 权晓云, 施光海. 新疆奇台和缅甸蒲甘硅化木的宝石学特征[J]. 宝石和宝石学杂志, 2016, 18(2): 26-33. doi: 10.3969/j.issn.1008-214X.2016.02.004
Li Y T, Quan X Y, Shi G H. Gemmological characteristic of petrified wood from Qitai, Xinjiang and Pagan, Burma[J]. Journal of Gems & Gemmology, 2016, 18(2): 26-33. doi: 10.3969/j.issn.1008-214X.2016.02.004
[18] 王亚平, 许春雪, 王苏明. 树木年轮与其根部土壤化学元素含量的相关性[J]. 地质通报, 2005, 24(10/11): 952-956. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2005Z1013.htm
Wang Y P, Xu C X, Wang S M. Correlation between chemical element contents in tree rings and those in soils near tree roots in the southern suburbs of Beijing, China[J]. Geological Bulletin of China, 2005, 24(10/11): 952-956. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2005Z1013.htm
[19] 周维丽. 硅化木的鉴定特征、成因与分类评价研究[J]. 中山大学研究生学刊(自然科学、医学版), 2014, 35(1): 8-13.
Zhou W L. The identification characteristics, causes and classification evaluation research of silicified wood[J]. Journal of the Graduates Sun Yat-Sen University (Natural Sciences, Medicine), 2014, 35(1): 8-13.
[20] 王义昭. 缅甸硅化木("树化玉")的成因[J]. 地质通报, 2011, 30(10): 1628-1637. doi: 10.3969/j.issn.1671-2552.2011.10.017
Wang Y Z. The genesis of silicified wood (Shuhuayu) of Myanmar[J]. Geological Bulletin of China, 2011, 30(10): 1628-1637. doi: 10.3969/j.issn.1671-2552.2011.10.017
[21] 张天乐, 王宗良, 胡云中. 腾冲现代热泉系统硅华的矿物学特征及其地质意义[J]. 岩石矿物学杂志, 1997, 16(2): 170-178.
Zhang T L, Wang Z L, Hu Y Z. Mineralogy of geyserite from the Tengchong active hot spring system and its geological implications[J]. Acta Petrologica et Mineralogica, 1997, 16(2): 170-178.
[22] 法默V C. 矿物的红外光谱[M]. 应育浦, 等译. 北京: 科学出版社, 1982: 304.
Farmer V C. Infrared spectrum of minerals[M]. Ying Y P, et al. trans. Beijing: Science Press, 1982: 304. (in Chinese)
[23] 陈全莉, 袁心强, 贾璐. 台湾蓝玉髓的振动光谱表征[J]. 光谱学与光谱分析, 2011, 31(6): 1549-1551. doi: 10.3964/j.issn.1000-0593(2011)06-1549-03
Chen Q L, Yuan X Q, Jia L. Study on the vibrational spectra characters of Taiwan blue chalcedony[J]. Spectroscopy and Spectral Analysis, 2011, 31(6): 1549-1551. doi: 10.3964/j.issn.1000-0593(2011)06-1549-03
[24] 余炼钢, 张烨. 两块相似石英质宝石的谱学鉴别及启示[J]. 超硬材料工程, 2020, 32(4): 62-65. doi: 10.3969/j.issn.1673-1433.2020.04.015
Yu L G, Zhang Y. Spectrographic identification of two similar quartz gemstones and its enlightenment[J]. Superhard Material Engineering, 2020, 32(4): 62-65. doi: 10.3969/j.issn.1673-1433.2020.04.015
[25] 雷芳芳. 缅甸硅化木与云南硅化木的岩石学特征对比研究[J]. 景德镇学院学报, 2020, 35(6): 61-64. doi: 10.3969/j.issn.1008-8458.2020.06.026
Lei F F. A comparative study on the petrological characteristics of petrified wood from Burma and Yunnan[J]. Journal of Jingdezhen University, 2020, 35(6): 61-64. doi: 10.3969/j.issn.1008-8458.2020.06.026
[26] 贺瑾瑞, 焦润成, 南赟, 等. 北京延庆千家店盆地土城子组古生物化石及古气候沉积环境——延庆地区首次发现疑似恐龙骨骼化石[J]. 地质通报, 2017, 36(8): 1319-1329. doi: 10.3969/j.issn.1671-2552.2017.08.002
He J R, Jiao R C, Nan Y, et al. A discussion on Tuchenzi fossils and paleoclimate sedimentary environment in Qianjiadian basin of Yanqing County: Suspected dinosaur bones discovered for the first time in Yanqing, Beijing[J]. Geological Bulletin of China, 2017, 36(8): 1319-1329. doi: 10.3969/j.issn.1671-2552.2017.08.002
[27] Tian N, Xie A W, Wang Y D, et al. New records of Jurassic petrified wood in Jianchang of western Liaoning, China and their palaeoclimate implications[J]. Science China Earth Sciences, 2015, 58(12): 2154-2164. doi: 10.1007/s11430-015-5208-1
[28] Jiang Z K, Wu H, Tian N, et al. A new species of conifer wood Brachyoxylon from the Cretaceous of eastern China and its paleoclimate significance[J]. Historical Biology, 2021, 33(10): 1989-1995. doi: 10.1080/08912963.2020.1755282
[29] 何情, 张建平, 邢立达, 等. 北京延庆千家店地区土城子组恐龙足迹点沉积环境[J]. 地质通报, 2015, 34(9): 1726-1734. doi: 10.3969/j.issn.1671-2552.2015.09.014
He Q, Zhang J P, Xing L D, et al. Sedimentary environment of Tuchengzi Formation dinosaur track site in Qianjiadian area, Yanqing County, Beijing[J]. Geological Bulletin of China, 2015, 34(9): 1726-1734. doi: 10.3969/j.issn.1671-2552.2015.09.014
-