APPLICATION OF SURFACE MICROSEISMIC MONITORING TECHNOLOGY IN FRACTURING EFFECT EVALUATION OF SHALE OIL HORIZONTAL WELL: A Case Study of SYY-2HF Well
-
摘要:
地面微地震监测是评价水平井压裂效果的有效手段.采用矩形观测系统、高灵敏度检波器深浅结合埋置、覆土耦合压实的采集技术,在2000 m之下的松页油2HF井水平段泥页岩储层中获得明显的压裂微地震信号.利用数据归一化、噪声压制、速度建模、震源定位等关键处理技术,有效提高了泥页岩储层低频信号成像精度.采用高精度反演定位解释技术,客观真实地评价了松页油2HF井的压裂效果,并提出压裂优化建议.
Abstract:Surface microseismic monitoring is an effective method to evaluate the fracturing effect of horizontal well. By adopting the rectangular observation system, shallow-depth embedment and soil-covering coupling compaction acquisition techniques of high sensitivity geophones, obvious fracturing microseismic signals are obtained in shale reservoir in the horizontal interval of SYY-2HF well below 2000 m. The application of key processing technology including data normalization, noise suppression, velocity modeling and seismic source localization has effectively improved the imaging precision of low-frequency signals in shale reservoir. Through high-precision inversion positioning and interpretation technology, the paper objectively evaluates the fracturing effect of SYY-2HF well and puts forward suggestions for fracturing optimization.
-
Key words:
- microseismic monitoring /
- fracturing /
- shale oil /
- horizontal well /
- Songliao Basin
-
-
表 1 检波器和采集器性能参数
Table 1. Performance parameters of geophone and collector
检波器参数信息 采集器参数信息 自然频率/Hz 4.5×(1±7.5%) 频带宽度/Hz 0.033~150 灵敏度/(V/m·s-1) 100×(1±5%) 自噪声水平 整个频段低于NHNM曲线; 10 s~10 Hz低于NLNM曲线 动态范围/dB 110 时间稳定度(GPS+北斗定位授时)/s 5×10-7 阻尼系数 0.55~0.65 整机功耗/mW 免交互工作模式, < 150@100 sps; Ethernet工作模式, < 700@100 sps 非线性畸变值 失真度≤ 0.9% 采样率/ms 2、5、10、50 线圈电阻/Ω 3800×(1±5%) 数据格式 2 bit或MSD(可转为SAC、PSD等格式) 表 2 松页油2HF井有效压裂区域及主裂缝特性
Table 2. Effective fracturing zones and major fracture features of SYY-2HF well
压裂段 主缝长度/m 裂缝方向 破裂面积/m2 造缝评价 第一段 141 SE22° 13002 带状缝 第二段 196 NE9° 20193 带状缝 第三段 153 SE29° 18384 带状缝 第四段 213 SE19° 19563 带状缝 第五段 170 SE25° 20152 带状缝 第六段 271 NE43° 34202 带状缝 第七段 259 NE36° 28950 带状缝 第八段 219 NE12° 27712 带状缝 第九段 213 NE36° 22467 带状缝 第十段 228 NE73° 31430 带状缝 -
[1] 张欣, 刘吉余, 侯鹏飞. 中国页岩油的形成和分布理论综述[J]. 地质与资源, 2019, 28(2): 165-170. doi: 10.3969/j.issn.1671-1947.2019.02.008 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8392.shtml
Zhang X, Liu J Y, Hou P F. A review on the formation and distribution theories of the shale oil in China[J]. Geology and Resources, 2019, 28(2): 165-170. doi: 10.3969/j.issn.1671-1947.2019.02.008 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8392.shtml
[2] Maxwell S C, Urbancic T I. The role of passive microseismic monitoring in the instrumented oil field[J]. The Leading Edge, 2001, 20(6): 636-639. doi: 10.1190/1.1439012
[3] Chambers K, Kendall J M, Brandsberg-Dahl S, et al. Testing the ability of surface arrays to monitor microseismic activity[J]. Geophysical Prospecting, 2010, 58(5): 821-830. doi: 10.1111/j.1365-2478.2010.00893.x
[4] Duncan P M, Eisner L. Reservoir characterization using surface microseismic monitoring[J]. Geophysics, 2010, 75(5): 75A139- 75A146. doi: 10.1190/1.3467760
[5] Eisner L, Hulsey B J, Duncan P, et al. Comparison of surface and borehole locations of induced seismicity[J]. Geophysical Prospecting, 2010, 58(5): 809-820. doi: 10.1111/j.1365-2478.2010.00867.x
[6] 刘百红, 秦绪英, 郑四连, 等. 微地震监测技术及其在油田中的应用现状[J]. 勘探地球物理进展, 2005, 28(5): 325-329.
Liu B H, Qin X Y, Zheng S L, et al. Microseismic monitoring and its applications in oilfield operations[J]. Progress in Exploration Geophysics, 2005, 28(5): 325-329.
[7] 张山, 刘清林, 赵群, 等. 微地震监测技术在油田开发中的应用[J]. 石油物探, 2002, 41(2): 226-231. doi: 10.3969/j.issn.1000-1441.2002.02.021
Zhang S, Liu Q L, Zhao Q, et al. Application of microseismic monitoring technology in development of oil field[J]. Geophysical Prospecting for Petroleum, 2002, 41(2): 226-231. doi: 10.3969/j.issn.1000-1441.2002.02.021
[8] Li J L, Zhang H J, Rodi W L, et al. Joint microseismic location and anisotropic tomography using differential arrival times and differential back azimuths[J]. Geophysical Journal International, 2013, 195(3): 1917-1931. doi: 10.1093/gji/ggt358
[9] Grechka V, De La Pena A, Schisselé-Rebel E, et al. Relative location of microseismicity[J]. Geophysics, 2015, 80(6): WC1-WC9. doi: 10.1190/geo2014-0617.1
[10] Zimmer U. Microseismic design studies[J]. Geophysics, 2011, 76(6): WC17-WC25. doi: 10.1190/geo2011-0004.1
[11] Close D, Perez M, Goodway B, et al. Integrated work flows for shale gas and case study results for the Horn River Basin, British Columbia, Canada[J]. The Leading Edge, 2012, 31(5): 556-569. doi: 10.1190/tle31050556.1
[12] 李大军, 杨晓, 王小兰, 等. 四川盆地W地区龙马溪组页岩气压裂效果评估和产能预测研究[J]. 石油物探, 2017, 56(5): 735-745. doi: 10.3969/j.issn.1000-1441.2017.05.014
Li D J, Yang X, Wang X L, et al. Estimating the fracturing effect and production capacity of the Longmaxi Formation of the Lower Silurian in area W, Sichuan Basin[J]. Geophysical Prospecting for Petroleum, 2017, 56(5): 735-745. doi: 10.3969/j.issn.1000-1441.2017.05.014
[13] Maxwell S C, Urbancic T I. Real-time 4D reservoir characterization using passive seismic data[C]//SPE Annual Technical Conference and Exhibition. San Antonio, Texas: SPE, 2002: SPE-77361-MS.
[14] 宋维琪, 刘军, 陈伟. 改进射线追踪算法的微震源反演[J]. 物探与化探, 2008, 32(3): 274-278. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH200803009.htm
Song W Q, Liu J, Chen W. Microearthquake source inversion of an improved ray tracing algorithm[J]. Geophysical &Geochemical Exploration, 2008, 32(3): 274-278. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH200803009.htm
[15] 宋维琪, 孙英杰, 朱卫星. 微地震资料频域相干-时间域偏振滤波方法[J]. 石油地球物理勘探, 2008, 43(2): 161-167. doi: 10.3321/j.issn:1000-7210.2008.02.008
Song W Q, Sun Y J, Zhu W X. Method of coherent filtering in frequency domain and polarization filtering in time domain for micro- earthquake data[J]. Oil Geophysical Prospecting, 2008, 43(2): 161-167. doi: 10.3321/j.issn:1000-7210.2008.02.008
[16] 刘旭礼. 井下微地震监测技术在页岩气"井工厂"压裂中的应用[J]. 石油钻探技术, 2016, 44(4): 102-107. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201604022.htm
Liu X L. The application of downhole microseismic monitoring technology in shale gas "well factory" hydraulic fracturing[J]. Petroleum Drilling Techniques, 2016, 44(4): 102-107. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201604022.htm
[17] 邵晓光, 董宏丽, 代丽艳. 微地震监测技术综述[J]. 吉林大学学报(信息科学版), 2018, 36(1): 55-61. doi: 10.3969/j.issn.1671-5896.2018.01.009
Shao X G, Dong H L, Dai L Y. Review of microseismic monitoring technology[J]. Journal of Jilin University (Information Science Edition), 2018, 36(1): 55-61. doi: 10.3969/j.issn.1671-5896.2018.01.009
[18] 黄小贞, 谷红陶. 井中微地震监测技术在平桥南页岩气区块应用效果分析[J]. 油气藏评价与开发, 2020, 10(1): 43-48.
Huang X Z, Gu H T. Microseismic monitoring technology of shale gas block in the southern part of Pingqiao[J]. Reservoir Evaluation and Development, 2020, 10(1): 43-48.
[19] 刘博, 徐刚, 纪拥军, 等. 页岩油水平井体积压裂及微地震监测技术实践[J]. 岩性油气藏, 2020, 32(6): 172-180.
Liu B, Xu G, Ji Y J, et al. Practice of volume fracturing and microseismic monitoring technology in horizontal wells of shale oil[J]. Lithologic Reservoirs, 2020, 32(6): 172-180.
[20] 赵超峰, 贾振甲, 田建涛, 等. 基于井中微地震监测方法的压裂效果评价——以吉林探区Y22井为例[J]. 岩性油气藏, 2020, 32(2): 161-168.
Zhao C F, Jia Z J, Tian J T, et al. Fracturing effect evaluation based on borehole microseismic monitoring method: A case study from well Y22 in Jilin exploration area[J]. Lithologic Reservoirs, 2020, 32(2): 161-168.
[21] 巫芙蓉, 闫媛媛, 尹陈. 页岩气微地震压裂实时监测技术——以四川盆地蜀南地区为例[J]. 天然气工业, 2016, 36(11): 46-50. doi: 10.3787/j.issn.1000-0976.2016.11.006
Wu F R, Yan Y Y, Yin C. Real-time microseismic monitoring technology for hydraulic fracturing in shale gas reservoirs: a case study from the Southern Sichuan Basin[J]. Natural Gas Industry, 2016, 36(11): 46-50. doi: 10.3787/j.issn.1000-0976.2016.11.006
[22] 陈新安. 页岩气水平井分段压裂微地震监测认识及应用[J]. 特种油气藏, 2017, 24(1): 170-174. doi: 10.3969/j.issn.1006-6535.2017.01.035
Chen X A. Understanding and application of microseism monitoring over staged fracturing in horizontal wells for shale gas development[J]. Special Oil and Gas Reservoirs, 2017, 24(1): 170-174. doi: 10.3969/j.issn.1006-6535.2017.01.035
[23] 刘家橙, 刘家橘, 王晓燕, 等. 微地震技术评价中牟区块体积压裂的效果[J]. 地质找矿论丛, 2019, 34(1): 78-83.
Liu J C, Liu J J, Wang X Y, et al. Micro-seismic technique evaluation of the effect of volumetric fracturing in Zhongmou area[J]. Contributions to Geology and Mineral Resources Research, 2019, 34(1): 78-83.
[24] 缪思钰, 张海江, 陈余宽, 等. 基于微地震定位和速度成像的页岩气水力压裂地面微地震监测[J]. 石油物探, 2019, 58(2): 262- 271, 284. doi: 10.3969/j.issn.1000-1441.2019.02.012
Miao S Y, Zhang H J, Chen Y K, et al. Surface microseismic monitoring of shale gas hydraulic fracturing based on microseismic location and tomography[J]. Geophysical Prospecting for Petroleum, 2019, 58(2): 262-271, 284. doi: 10.3969/j.issn.1000-1441.2019.02.012
[25] 李德伟, 杨瑞召, 张都, 等. 水力压裂微地震事件分布趋势分析——以MY1井微地震监测为例[J]. 断块油气田, 2019, 26(3): 346-349. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201903017.htm
Li D W, Yang R Z, Zhang D, et al. Distribution trend analysis of hydraulic fracturing events: Taking MY1 Well microseismic monitoring as an example[J]. Fault-Block Oil & Gas Field, 2019, 26(3): 346-349. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201903017.htm
[26] 刘振武, 撒利明, 巫芙蓉, 等. 中国石油集团非常规油气微地震监测技术现状及发展方向[J]. 石油地球物理勘探, 2013, 48(5): 843-853. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201305027.htm
Liu Z W, Sa L M, Wu F R, et al. Microseismic monitor technology status for unconventional resource E&P and its future development in CNPC[J]. Oil Geophysical Prospecting, 2013, 48(5): 843-853. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201305027.htm
[27] 余洋洋, 梁春涛, 康亮, 等. 微地震地面监测系统的优化设计[J]. 石油地球物理勘探, 2017, 52(5): 974-983. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201705010.htm
Yu Y Y, Liang C T, Kang L, et al. Design optimization of surface- based microseismic monitoring system for hydraulic fracturing[J]. Oil Geophysical Prospecting, 2017, 52(5): 974-983. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201705010.htm
[28] 崔庆辉, 尹成, 刁瑞, 等. 地面微地震监测数据处理难点及对策[J]. 油气藏评价与开发, 2017, 7(1): 7-13. doi: 10.3969/j.issn.2095-1426.2017.01.002
Cui Q H, Yin C, Diao R, et al. Difficulties and countermeasure of surface microseismic monitoring data processing[J]. Reservoir Evaluation and Development, 2017, 7(1): 7-13. doi: 10.3969/j.issn.2095-1426.2017.01.002
[29] 毛庆辉, 王鹏, 曾隽. 水力压裂微地震事件定位方法综述[J]. 地球物理学进展, 2019, 34(5): 1878-1886. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201905022.htm
Mao Q H, Wang P, Zeng J. Review of hydro-fracturing microseismic event location methods[J]. Progress in Geophysics, 2019, 34(5): 1878-1886. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201905022.htm
[30] 张晟瑞, 任朝发, 李星缘, 等. 地面微地震资料噪声压制方法[J]. 地球物理学进展, 2018, 33(6): 2522-2527.
Zhang S R, Ren C F, Li X Y, et al. Denoising method of surface microseismic data[J]. Progress in Geophysics, 2018, 33(6): 2522- 2527.
[31] 代丽艳, 董宏丽, 李学贵. 微地震数据去噪方法综述[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1145-1159.
Dai L Y, Dong H L, Li X G. Review of microseismic data denoising methods[J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4): 1145-1159.
[32] 王程, 王维红. 基于背景噪声和特征值下降比的微地震SVD去噪改进方法[J]. 东北石油大学学报, 2020, 44(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY202005001.htm
Wang C, Wang W H. Optimal method of SVD for micro-seismic data based on background noise and eigenvalue ratio of reduction[J]. Journalof Northeast Petroleum University, 2020, 44(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY202005001.htm
[33] 王维波, 周瑶琪, 春兰. 地面微地震监测SET震源定位特性研究[J]. 中国石油大学学报(自然科学版), 2012, 36(5): 45-50, 55. doi: 10.3969/j.issn.1673-5005.2012.05.008
Wang W B, Zhou Y Q, Chun L. Characteristics of source localization by seismic emission tomography for surface based on microseismic monitoring[J]. Journal of China University of Petroleum, 2012, 36(5): 45-50, 55. doi: 10.3969/j.issn.1673-5005.2012.05.008
[34] Duncan P M. Is there a future for passive seismic?[J]. First Break, 2005, 23(6): 111-115.
[35] 宋维琪, 朱海伟, 姜宇东, 等. 地面微地震资料震源定位的贝叶斯反演方法[J]. 石油物探, 2013, 52(1): 11-16.
Song W Q, Zhu H W, Jiang Y D, et al. Bayesian inversion method for surface monitoring microseismic data[J]. Geophysical Prospecting for Petroleum, 2013, 52(1): 11-16.
[36] 杨建国, 李士超, 姚玉来, 等. 松辽盆地北部陆相页岩油调查取得重大突破[J]. 地质与资源, 2020, 29(3): 300. doi: 10.3969/j.issn.1671-1947.2020.03.015 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10208.shtml
Yang J G, Li S C, Yao Y L, et al. Significant breakthrough in the continental shale oil survey in northern Songliao Basin[J]. Geology and Resources, 2020, 29(3): 300. doi: 10.3969/j.issn.1671-1947.2020.03.015 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10208.shtml
-