EVALUATION ON THE SOIL QUALITY AND SUITABILITY OF GREEN FOOD PRODUCING AREA IN NEHE CITY OF HEILONGJIANG PROVINCE
-
摘要:
基于东北黑土地1∶250 000土地质量地球化学调查数据,按照《土地质量地球化学评价规范》和《土壤环境质量农用地土壤污染风险管控标准(试行)》,对讷河市土壤养分、土壤环境质量、土壤综合质量及绿色产地适宜性进行评价. 结果显示讷河市土地肥沃,环境清洁,适合于发展绿色农业:1)土壤养分单指标N、P、K、有机质、CaO、MgO、Fe2O3、S、B、Zn、Mn、Cu、Mo、Co、Ge、V共16项中,除Cu、Zn为较缺乏和Ge、B缺乏外,其他指标均为丰富和较丰富;土壤养分综合等级以较丰富和中等为主,分布面积分别为3 666.74 km2和2 574.11 km2,占全区面积的56.94%和39.97%. 2)土壤环境质量以一等(无风险)为主,一等区面积6 435.78 km2,占全区面积的99.94%;二等(风险可控)区面积仅4 km2,占0.06%. 3)全区土壤质量综合等级以优质为主,优质土壤面积3 806.06 km2,占全区面积的59.11%;良好级土壤面积2 574.11 km2,占39.97%;中等级土壤面积59.61 km2,占0.92%;没有四等(差等)和五等(劣等)土壤. 4)符合一级绿色食品产地的土壤面积为6 461.5 km2,占全区面积的97.5%;符合二级绿色食品产地的土壤面积为38.1 km2,占全区面积的0.58%;不符合绿色食品产地的土壤面积为65.6 km2,占全区面积的0.99%.
Abstract:Based on the 1∶250 000 land quality geochemical survey data of black land in Northeast China, the soil nutrients, soil environmental quality, comprehensive soil quality and suitability of green food producing area in Nehe City are evaluated according to the Soil Quality Geochemical Evaluation Standard and Soil Environmental Quality Agricultural Land Soil Pollution Risk Control Standard (Trial). The results show that there is fertile land and clean environment in Nehe City, which is suitable for the development of green agriculture. Among the 16 indexes, including N, P, K, organic matter, CaO, MgO, Fe2O3, S, B, Zn, Mn, Cu, Mo, Co, Ge and V, except Cu and Zn are relatively deficient, Ge and B deficient, the others are rich or relatively rich. The comprehensive soil nutrient grades are mainly rich and medium, with distribution areas of 3 666.74 km2 and 2 574.11 km2, accounting for 56.94% and 39.97% of the total area respectively. The soil environmental quality is dominated by Grade Ⅰ(risk free), covering an area of 6 435.78 km2, accounting for 99.94% of the total; while the Grade Ⅱ(risk controllable)area is only 4 km2, occupying 0.06%. The comprehensive soil quality is largely fine-grade soil, covering 3 806.06 km2 and accounting for 59.11% of the total area, with the good-grade of 2 574.11 km2(39.97%)and medium-grade of 59.61 km2(0.92%), no poor- and inferior-grades soil. The soil area conforming to Grade-AA green food production area is 6 461.5 km2, accounting for 97.5% of the total area, that conforming to Grade-A 38.1 km2(0.58%), and that does not meet the requirements is 65.6 km2(0.99%).
-
Key words:
- green food producing area /
- soil nutrient /
- soil environment /
- soil quality /
- Nehe City /
- Heilongjiang Province
-
-
表 1 土壤元素分析方法及检出限
Table 1. Analysis methods and detection limits of soil elements
序号 成分 检出限 分析方法 1 Cr 1.8 X射线荧z光光谱法 2 Cu 0.9 X射线荧z光光谱法 3 P 6 X射线荧z光光谱法 4 Pb 1 X射线荧z光光谱法 5 V 4 X射线荧z光光谱法 6 K2O 0.02 X射线荧z光光谱法 7 Cu 0.9 X射线荧z光光谱法 8 As 0.5 原子荧光光度法 9 Hg 0.0003 原子荧光光度法 10 B 1 发射光谱法 11 Corg 0.03 容量法 12 N 19 凯氏定氮法 13 Zn 0.3 电感耦合等离子体发射光谱法 14 Fe2O3 0.01 电感耦合等离子体发射光谱法 15 CaO 0.02 电感耦合等离子体发射光谱法 16 MgO 0.02 电感耦合等离子体发射光谱法 17 Co 0.6 电感耦合等离子体发射光谱法 18 Mn 0.3 电感耦合等离子体发射光谱法 19 Ni 1.5 电感耦合等离子体发射光谱法 20 S 18 高频燃烧红外吸收法 21 Cd 0.02 等离子体质谱法 22 Ge 0.09 等离子体质谱法 23 Mo 0.06 等离子体质谱法 含量单位:氧化物、有机碳为10-2,Au为10-9,其他为10-6. 表 2 土壤养分地球化学综合等级划分
Table 2. Comprehensive geochemical grading of soil nutrients
等级 一级
(丰富)二级
(较丰富)三级
(中等)四级
(较缺乏)五级
(缺乏)f养综 ≥4.5 < 3.5~4.5 < 3.5~2.5 < 2.5~1.5 < 1.5 表 3 重金属单元素污染风险等级划分标准
Table 3. Grading standard for single element pollution risk of heavy metals
环境等级 一等(无风险) 二等(风险可控) 三等(风险较高) 污染风险 无风险 风险可控 风险较高 划分方法 Ci≤Si Si < Ci≤Gi Ci > Gi 注:Ci为土壤中指标i的实测浓度,Si为污染风险筛选值,Gi为污染风险管控值. 表 4 土壤质量地球化学综合等级表
Table 4. Comprehensive geochemical grading of soil quality
土壤质量综合等级 环境综合等级 一等
(无风险)二等
(风险可控)三等
(风险较高)养分综合等级 一等(丰富) 一等 三等 五等 二等(较丰富) 一等 三等 五等 三等(中等) 二等 三等 五等 四等(较缺乏) 三等 三等 五等 五等(缺乏) 四等 四等 五等 表 5 土壤肥力等级划分表
Table 5. Grading of soil fertility of dry and paddy lands
项目 级别 旱田 水田 有机质/10-3 Ⅰ >15 >25 Ⅱ 10~15 20~25 Ⅲ <10 <20 全氮/10-3 Ⅰ >1.0 >1.2 Ⅱ 0.8~1.0 1.0~1.2 Ⅲ <0.8 <1.0 表 6 土壤大量营养元素(指标)含量及评价结果统计表
Table 6. Contents of major soil nutrient elements and evaluation results
指标 样品数 含量范围 平均值 变异系数 土壤质量等级 一等(丰富) 二等(较丰富) 三等(中等) 四等(较缺乏) 五等(缺乏) 有机质 1554 15.17~60.68 37.07 0.21 面积 2064.34 3379.03 906.91 85.67 3.83 百分比 32.06 52.47 14.08 1.33 0.06 N 1603 0.83~3.01 1.90 0.20 面积 2519.12 2960.37 945.15 15.13 0 百分比 39.12 45.97 14.68 0.23 0 P 1573 0.34~1.05 0.68 0.18 面积 229.04 1000.3 3486.83 1664 59.61 百分比 3.56 15.53 54.15 25.84 0.93 K 1543 17.76~22.40 20.09 0.04 面积 12 3583.82 2843.95 0 0 百分比 0.19 55.65 44.16 0 0 含量单位:10-3;面积单位:km2. 表 7 土壤中量营养元素含量及评价结果统计表
Table 7. Contents of medium soil nutrient elements and evaluation results
指标 样品数 含量范围 平均值 变异系数 土壤质量等级 一等(丰富) 二等(较丰富) 三等(中等) 四等(较缺乏) 五等(缺乏) 超出上限 CaO 1490 0.58~2.06 1.32 0.19 面积 29.42 210.59 4658.82 1540.94 0 百分比 0.46 3.27 72.34 23.93 0 MgO 1615 0.50~1.91 1.20 0.21 面积 0 41.61 3235.61 2991.41 171.14 百分比 0 0.65 50.24 46.45 2.66 S 1595 152.00~673.00 411.36 0.21 面积 5061.09 1033.12 292.1 29.86 15.61 8 百分比 78.59 16.04 4.54 0.46 0.24 0.12 含量单位:CaO、MgO为10-2,S为10-6;面积单位:km2. 表 8 土壤微量营养元素含量及评价结果
Table 8. Contents of micro soil nutrient elements and evaluation results
指标 样品数 含量范围 平均值 变异系数 土壤质量等级 一等 二等 三等 四等 五等 超出上限 Fe2O3 1607 2.53~7.06 4.90 0.16 面积 2619.11 1648.74 918.19 871.81 381.93 百分比 40.67 25.6 14.26 13.54 5.93 Mn 1591 231.00~1332.00 741.7 0.27 面积 3638.74 1205.61 881.51 517.63 173.24 23.06 百分比 56.5 18.72 13.69 8.04 2.69 0.36 Cu 1600 10.3~28.7 19.77 0.16 面积 0 247.89 2357.18 2807.98 1022.72 4 百分比 0 3.85 36.6 43.6 15.88 0.06 Zn 1607 30.9~84.80 58.1 0.16 面积 4 308.99 2251.52 2465.06 1410.2 百分比 0.06 4.8 34.96 38.28 21.9 B 1608 13.30~52.40 31.9 0.22 面积 4 16 258.06 3445.78 2715.94 百分比 0.06 0.25 4.01 53.51 42.17 Mo 1579 0.33~1.93 0.69 0.20 面积 876.9 2923.57 1689.61 736.19 213.51 百分比 13.62 45.4 26.24 11.43 3.32 Co 1612 0.33~1.09 14.7 0.22 面积 3015.14 1353.5 1159.41 820.81 90.91 百分比 46.82 21.02 18 12.75 1.41 V 1604 54.0~143.0 99.9 0.15 面积 4003.2 1299.84 620.77 381.69 134.27 百分比 62.16 20.18 9.64 5.93 2.09 Ge 1595 0.78~1.59 1.17 0.12 面积 173.5 288.43 729.48 1271.2 3977.17 百分比 2.69 4.48 11.33 19.74 61.76 含量单位:Fe2O3为10-2,其他元素为10-6;面积单位:km2. 表 9 表层土壤养分综合评价结果
Table 9. Comprehensive evaluation results of topsoil nutrients
等级 一等
(丰富)二等
(较丰富)三等
(中等)四等
(较缺乏)五等
(缺乏)面积/km2 143.32 3666.74 2574.11 55.61 0 比例/% 2.23 56.94 39.97 0.86 0 表 10 土壤环境单指标评价结果表
Table 10. Single index evaluation results of soil heavy metals
元素 一等(无风险) 二等(风险可控) 面积/km2 比例/% 面积/km2 比例/% Ni 6435.78 99.94 4 0.06 Hg 6439.78 100 — — As 6439.78 100 — — Pb 6439.78 100 — — Cr 6439.78 100 — — Cu 6439.78 100 — — Cd 6439.78 100 — — Zn 6439.78 100 — — 环境综合 6435.78 99.94 4 0.06 -
[1] 倪绍祥. 土地类型与土地评价概论[M]. 2版. 北京: 高等教育出版社, 1999: 56-307.
Ni S X. An introduction to land classification and evaluation[M]. 2nd ed. Beijing: Higher Education Press, 1999: 56-307.
[2] 任家强, 汪景宽, 杨晓波, 等. 辽河中下游平原土地质量地球化学评价及空间分布研究[J]. 沈阳农业大学学报, 2011, 42(2): 208-211. doi: 10.3969/j.issn.1000-1700.2011.02.016
Ren J Q, Wang J K, Yang X B, et al. Geochemical land quality evaluation and space distribution in the Liao Middle-downriver plain [J]. Journal of Shenyang Agricultural University, 2011, 42(2): 208-211. doi: 10.3969/j.issn.1000-1700.2011.02.016
[3] 宋运红, 张哲寰, 杨凤超, 等. 黑龙江海伦地区垦殖前后典型黑土剖面主要养分元素垂直分布特征[J]. 地质与资源, 2020, 29(6): 543-549. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10243.shtml
Song Y H, Zhang Z H, Yang F C, et al. Vertical distribution of major nutrient elements in typical black soil sections in Hailun, Heilongjiang Province: Before and after reclamation[J]. Geology and Resources, 2020, 29(6): 543-549. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10243.shtml
[4] 马逸麟, 谢长瑜, 胡晨琳, 等. 江西省吉泰盆地土地质量评价[J]. 物探与化探, 2015, 39(2): 387-395. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201502030.htm
Ma Y L, Xie C Y, Hu C L, et al. Land quality evaluation of the Jitai Basin in Jiangxi Province[J]. Geophysical and Geochemical Exploration, 2015, 39(2): 387-395. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201502030.htm
[5] 孙淑梅, 张连志, 闫冬. 吉林省德惠-农安地区土地质量地球化学评估[J]. 现代地质, 2008, 22(6): 998-1002. doi: 10.3969/j.issn.1000-8527.2008.06.016
Sun S M, Zhang L Z, Yan D. Experimental study on method and technique of land quality geochemical assessment[J]. Geoscience, 2008, 22(6): 998-1002. doi: 10.3969/j.issn.1000-8527.2008.06.016
[6] 梁红霞, 史春鸿. 当涂县土地质量地球化学评估[J]. 安徽地质, 2014, 24(2): 122-126, 130. doi: 10.3969/j.issn.1005-6157.2014.02.010
Liang H X, Shi C H. Geochemical assessment of land quality of Dangtu County[J]. Geology of Anhui, 2014, 24(2): 122-126, 130. doi: 10.3969/j.issn.1005-6157.2014.02.010
[7] 于成广, 杨忠芳, 杨晓波, 等. 土地质量地球化学评估方法研究与应用: 以盘锦市为例[J]. 现代地质, 2012, 26(5): 873-878, 909. doi: 10.3969/j.issn.1000-8527.2012.05.005
Yu C G, Yang Z F, Yang X B, et al. Study and application on land quality geochemical assessment methods: Taking Panjin City as an example[J]. Geoscience, 2012, 26(5): 873-878, 909. doi: 10.3969/j.issn.1000-8527.2012.05.005
[8] 刘军保, 黄春雷, 岑静, 等. 土地质量地球化学评估方法研究——以慈溪市为例[J]. 资源调查与环境, 2010, 31(1): 50-59. doi: 10.3969/j.issn.1671-4814.2010.01.007
Liu J B, Huang C L, Cen J, et al. Study on land quality geochemical assessment methods: Taking Cixi City as an example[J]. Resources Survey & Environment, 2010, 31(1): 50-59. doi: 10.3969/j.issn.1671-4814.2010.01.007
[9] 王增辉, 王存龙, 赵西强, 等. 山东省黄河下游流域土地质量地球化学评估及方法研究[J]. 物探与化探, 2013, 37(4): 743-748. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201304034.htm
Wang Z H, Wang C L, Zhao X Q, et al. Land quality geochemical assessment and method research based on geochemical data obtained from the downstream basin of the yellow river in Shandong[J]. Geophysical & Geochemical Exploration, 2013, 37(4): 743-748. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201304034.htm
[10] 张景华, 欧阳渊, 陈远智, 等. 基于无人机遥感的四川省昭觉县农业产业园土地适宜性评价[J]. 中国地质, 2021, 48(6): 1710-1719. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202106003.htm
Zhang J H, Ouyang Y, Chen Y Z, et al. Land suitability evaluation of agricultural industrial park based on UAV remote sensing in Zhaojue County of Sichuan Province[J]. Geology in China, 2021, 48 (6): 1710-1719. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202106003.htm
[11] 姜华, 唐晓华, 杨利亚, 等. 基于土地资源的市县级多要素国土空间开发适宜性评价研究——以湖北省宜昌市为例[J]. 中国地质, 2020, 47(6): 1776-1792. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202006015.htm
Jiang H, Tang X H, Yang L Y, et al. Suitability evaluation of land space development based on land resources: A case study of Yichang City in Hubei Province[J]. Geology in China, 2020, 47(6): 1776-1792. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202006015.htm
[12] 刘孜, 黄行凯, 徐宏林, 等. 湖北宜昌鸦鹊岭地区岩石-土壤元素迁移特征及柑橘种植适宜性评价[J]. 中国地质, 2020, 47(6): 1853-1868. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202006021.htm
Liu Z, Huang X K, Xu H L, et al. Migration characteristics of elements in the rock-soil system and suitability evaluation of orange planting in Yaqueling area, Yichang, Hubei Province[J]. Geology in China, 2020, 47(6): 1853-1868. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202006021.htm
[13] 张哲寰, 宋运红, 赵君, 等. 黑龙江省讷河市土壤某些微量元素地球化学特征[J]. 地质与资源, 2019, 28(4): 378-382. doi: 10.3969/j.issn.1671-1947.2019.04.011 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8363.shtml
Zhang Z H, Song Y H, Zhao J, et al. Trace element geochemistry of the soil in Nehe City, Heilongjiang Province[J]. Geology and Resources, 2019, 28(4): 378-382. doi: 10.3969/j.issn.1671-1947.2019.04.011 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8363.shtml
[14] 中华人民共和国农业部. NY/T391—2013绿色食品产地环境质量[S]. 北京: 中国农业出版社, 2014.
Ministry of Agriculture of the PRC. NY/T391—2013Green food: Environmental quality for production area[S]. Beijing: China Agriculture Press, 2014.
[15] 中华人民共和国农业部. NY/T1054—2021绿色食品产地环境调查、监测与评价规范[S]. 北京: 中国农业出版社, 2021.
Ministry of Agriculture of the PRC. NY/T1054—2021Green food: Specification for field environmental investigation, monitoring and assessment[S]. Beijing: China Agriculture Press, 2021.
[16] 中华人民共和国农业部. NY/T5295—2015无公害农产品产地环境评价准则[S]. 北京: 中国农业出版社, 2015.
Ministry of Agriculture of the PRC. NY/T5295—2015Environmental assessment criteria for producing areas of pollution-free agricultural products[S]. Beijing: China Agriculture Press, 2015. (in Chinese)
[17] 全国农业技术推广服务中心, 农业部耕地质量监测保护中心, 吉林省土壤肥料总站. 东北玉米优势区耕地质量专题评价[M]. 北京: 中国农业出版社, 2017: 129.
National Center for Agricultural Technology Extension(Promotion), Cultivated Land Quality Monitoring and Protection Center of the Ministry of Agriculture, Jilin Soil and Fertilizer General Station. Monographic evaluation of cultivated land quality in corn dominant area of northeast China[M]. Beijing: China Agriculture Press, 2017: 129. (in Chinese)
[18] 浙江农业大学. 植物营养与肥料[M]. 北京: 中国农业出版社, 1991: 123-139.
Zhejiang Agricultural University. Plant nutrition and fertilizer[M]. Beijing: China Agriculture Press, 1991: 123-139. (in Chinese)
[19] 蒋德安. 植物生理学实验指导[M]. 四川: 成都科技大学出版社, 1999: 22-23.
Jiang D A. Plant physiology experimental guidance[M]. Sichuan: Chengdu University of Science and Technology Press, 1999: 22-23. (in Chinese)
[20] 唐明灯, 吴龙华, 李宁, 等. 修复植物香薷堆肥对缺铜土壤上冬小麦生长和铜吸收的初步研究[J]. 土壤, 2006, 38(5): 614-618. doi: 10.3321/j.issn:0253-9829.2006.05.019
Tang M D, Wu L H, Li N, et al. Preliminary study on effect of Elsholtzia splendens compost on plant growth and Cu uptake by winter wheat in a Cu-deficient upland soil[J]. Soils, 2006, 38(5): 614-618. doi: 10.3321/j.issn:0253-9829.2006.05.019
[21] 郑利伟. 土壤缺锌作物典型症状及综合防治措施[J]. 现代农业科技, 2009(7): 185. https://www.cnki.com.cn/Article/CJFDTOTAL-ANHE200907139.htm
Zheng L W. Typical symptoms and integrated control measures of zinc deficiency crops in soil[J]. Modern Agricultural Science and Technology, 2009(7): 185. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ANHE200907139.htm
[22] 蔡庆生. 植物生理学[M]. 北京: 中国农业大学出版社, 2014: 121-122.
Cai Q S. Plant physiology[M]. Beijing: China Agricultural University Press, 2014: 121-122.
[23] 刘万华, 邵凤成, 刘淑君, 等. 武清区农田土壤缺硼现状与补硼措施[J]. 天津农业科学, 2009, 15(S1): 5-7.
Liu W H, Shao F C, Liu S J, et al. Current situation of Boron deficiency in farmland soils in Wuqing District and measures for Boron supplementation[J]. Tianjin Agricultural Sciences, 2009, 15 (S1): 5-7. (in Chinese)
[24] 刘艳, 侯龙鱼, 赵广亮, 等. 锗对植物影响的研究进展[J]. 中国生态农业学报, 2015, 23(8): 931-937. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201508001.htm
Liu Y, Hou L Y, Zhao G L, et al. Mechanism and application of germanium in plant growth[J]. Chinese Journal of Eco-Agriculture, 2015, 23(8): 931-937. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201508001.htm
[25] Rosenberg E. Germanium: Environmental occurrence, importance and speciation[J]. Reviews in Environmental Science and Bio/Technology, 2009, 8(1): 29.
[26] 孔涛, 曲韵笙, 朱连勤. 微量元素锗的生物学功能[J]. 微量元素与健康研究, 2007, 24(1): 59-60. https://www.cnki.com.cn/Article/CJFDTOTAL-WYJK200701027.htm
Kong T, Qu Y S, Zhu L Q. Biological function of trace element germanium[J]. Studies of Trace Elements and Health, 2007, 24(1): 59-60. https://www.cnki.com.cn/Article/CJFDTOTAL-WYJK200701027.htm
-