DETERMINATION OF 26 ANTIBIOTICS IN GROUNDWATER BY DIFFUSIVE GRADIENTS IN THIN FILMS TECHNIQUE COMBINED WITH UPLC-MS/MS
-
摘要:
近年来地下水中抗生素污染持续受到关注. 由于抗生素含量一般为痕量级, 对地下水样中抗生素的采样提取检测提出了很高的要求. 利用薄膜梯度扩散法建立了原位富集地下水中抗生素的采样方法, 成功富集了磺胺类、喹诺酮类、四环素类、大环内酯类等抗生素; 同时, 应用超高效液相三重串联质谱法建立了分析地下水中26种典型抗生素的检测方法, 优化了提取条件. 结果表明, 整套采样及测试方法对地下水中抗生素分析具有较好的富集效果和检测灵敏度. 地下水原位富集采样时间20~30 d为宜, 26种抗生素的仪器检出限为0.002~0.074 ng/L, 平均回收率为47.7%~94.6%, 精密度4.45%~10.84%. 薄膜梯度扩散法原位富集采集地下水中抗生素的采样方式操作简单, 结合三重串联四级杆液相色谱能够实现地下水中抗生素的痕量分析.
Abstract:Antibiotic contamination in groundwater has been concerned in recent years. Due to the trace-level concentration of antibiotics, the processes for sampling, extraction and detection are highly required. The diffusive gradients in thin films (DGT) is used to establish the in situ enrichment sampling method of antibiotics in groundwater, and antibiotics such as sulfonamides, quinolones, tetracyclines and macrolides are successfully enriched. Besides, the ultra-high performance liquid chromatogrphy tandem mass spectrometry (UPLC-MS/MS) is applied for the detection method of 26 typical antibiotics in groundwater, with optimized extraction conditions. The results show that the sampling and testing methods have good enrichment effect and detection sensitivity for analysis of antibiotics in groundwater. The appropriate in-situ enrichment sampling time of groundwater is 20-30 d, with instrument detection limit of 0.002-0.074 ng/L, average recovery of 47.7%-94.6% and precision of 4.45%-10.84%. The in situ enrichment sampling method of antibiotics in groundwater through DGT is simple and can be used for trace analysis of antibiotics in groundwater combined with UPLC-MS/MS.
-
Key words:
- DGT /
- UPLC-MS/MS /
- antibiotic /
- in-situ enrichment /
- groundwater
-
-
表 1 26种抗生素的串联质谱检测参数
Table 1. Detection parameters of 26 antibiotics by tandem mass spectrometry
抗生素 母离子(m/z) 子离子(m/z) 碰撞电压/V 入口电压/V 保留时间/min OBX 396 352 23 10 6.23 396 295 34 9 6.22 EFX 360 245 33 26 6.11 360 316 25 12 6.11 CFX 332 245 30 6 5.39 332 288 23 6 5.38 LFX 352 308 21 29 5.74 352 265 30 28 5.74 NFX 320 276 22 33 5.14 320 233 33 32 5.14 OFX 362 318 24 27 5.19 362 261 38 18 5.19 LIM 407 126 41 23 3.96 407 359 25 22 3.97 DC 445 428 24 3 9.00 445 154 39 3 5.63 TC 445 410 25 3 5.63 445 427 18 2 8.99 OTC 461 426 25 18 5.18 461 444 20 5 9.26 SCT 215 156 13 12 2.19 215 92 34 11 2.18 SCP 285 156 20 24 6.43 285 108 36 11 6.43 SDZ 251 92 36 18 3.63 251 156 21 19 3.64 SDT 311 218 24 24 7.41 311 156 26 20 7.41 SDX 311 156 18 9 6.83 311 108 29 29 6.83 SMR 265 156 22 10 4.05 265 172 21 24 4.06 SME 281 215 22 30 5.50 281 156 23 15 6.34 SDM 279 156 26 19 5.24 279 186 23 3 5.24 SMZ 271 156 19 16 5.25 271 108 34 17 5.24 SMM 254 147 19 9 6.77 254 156 21 10 6.77 SPD 281 156 13 9 5.50 281 108 27 25 5.50 STZ 281 108 24 25 5.51 281 156 15 30 5.51 SIZ 315 158 41 8 7.46 315 160 30 29 7.46 SMT 250 92 41 12 3.63 250 156 21 7 3.64 SMD 256 156 19 7 3.47 256 108 34 22 3.48 SPA 268 108 37 17 7.03 268 156 19 16 7.03 表 2 26种抗生素在地下水中的扩散系数
Table 2. Diffusion coefficients of 26 antibiotics in groundwater
抗生素 D25 DT 抗生素 D25 DT OBX 2.48 1.44 SDT 3.84 2.22 EFX 2.96 1.71 SDX 3.85 2.23 CFX 2.75 1.59 SMR 3.79 2.19 LFX 3.07 1.78 SME 4.01 2.32 NFX 2.46 1.42 SDM 3.84 2.22 OFX 2.24 1.30 SMZ 4.01 2.32 LIM 3.10 1.79 SMM 4.08 2.36 DC 2.14 1.24 SPD 4.75 2.75 TC 2.17 1.26 STZ 4.61 2.67 OTC 2.06 1.19 SIZ 3.79 2.19 SCT 4.76 2.76 SMT 5.10 2.95 SCP 3.59 2.08 SMD 3.42 1.98 SDZ 4.23 2.45 SPA 3.56 2.06 单位: 10-6 cm2/s. 表 3 26种抗生素的线性方程及相关系数
Table 3. Linear equations and correlation coefficients of 26 antibiotics
抗生素 线性方程 相关系数 OBX y=30806x+610.54 R2=0.9996 EFX y=8292.9x-4301.2 R2=0.9963 CFX y=5539.6x-1878.3 R2=0.9956 LFX y=16681x-4910.6 R2=0.9975 NFX y=6156.1x-1497.2 R2=0.9976 OFX y=13349x-5042.3 R2=0.9966 LIM y=185912x+41602 R2=0.9991 DC y=47506x-3568.2 R2=0.9957 TC y=9708.5x+1130.5 R2=0.9985 OTC y=17239x-1261.2 R2=0.9984 SCT y=10749x+26673 R2=0.9994 SCP y=30638x+90999 R2=0.9977 SDZ y=36163x+21302 R2=0.9953 SDT y=75666x+28313 R2=0.9986 SDX y=50986x+28377 R2=0.9973 SMR y=38962x+20614 R2=0.9952 SME y=37408x+21307 R2=0.9963 SDM y=75836x+35697 R2=0.9968 SMZ y=49079x+27972 R2=0.9987 SMM y=24357x+16088 R2=0.9963 SPD y=18542x+10095 R2=0.9975 STZ y=88213x+12936 R2=0.9988 SIZ y=35299x+11003 R2=0.9993 SMT y=43963x+21754 R2=0.9974 SMD y=50821x+39997 R2=0.9955 SPA y=33864x+67205 R2=0.9969 表 4 26种抗生素检出限、精密度及准确度
Table 4. Detection limit, precision and accuracy of 26 antibiotics
抗生素 检出限/(μg/L) 精密度/% 准确度/% 仪器
检出限仪器
定量限添加量
10 ng添加量
50 ng添加量
100 ngOBX 0.012 0.041 5.55 61.1 63.9 66.9 EFX 0.071 0.238 7.49 63.4 64.9 68.1 CFX 0.054 0.181 9.02 63.4 66.3 67.2 LFX 0.015 0.051 6.22 62.1 63.2 65.9 NFX 0.060 0.199 8.91 57.4 60.3 61.2 OFX 0.011 0.037 7.98 50.3 55.3 58.7 LIM 0.008 0.025 9.87 55.4 57.9 58.4 DC 0.066 0.219 10.24 59.3 59.0 62.1 TC 0.024 0.080 10.84 62.1 61.5 64.2 OTC 0.069 0.229 8.73 57.6 58.11 60.2 SCT 0.074 0.248 8.28 61.6 63.9 71.0 SCP 0.013 0.043 5.78 64.7 67.1 74.5 SDZ 0.008 0.028 5.68 78.6 81.5 90.6 SDT 0.002 0.007 6.32 90.2 93.5 94.6 SDX 0.002 0.006 7.01 76.2 79.1 87.9 SMR 0.016 0.053 8.18 78.4 81.4 90.4 SME 0.007 0.024 4.98 81.9 85.0 94.4 SDM 0.004 0.014 6.43 73.1 75.8 84.2 SMZ 0.009 0.028 5.45 77.4 80.3 89.3 SMM 0.023 0.077 6.96 64.6 67.0 74.5 SPD 0.014 0.048 4.45 79.3 82.3 91.4 STZ 0.011 0.037 7.45 66.3 68.8 76.4 SIZ 0.009 0.029 7.23 85.1 88.2 88.0 SMT 0.007 0.022 7.69 76.9 79.8 88.6 SMD 0.018 0.061 5.15 78.4 81.3 90.3 SPA 0.009 0.032 9.18 47.7 49.5 55.0 表 5 哈尔滨地区地下水中抗生素检出结果表
Table 5. Detected antibiotics in groundwater of Harbin area
采样点 H01 H02 H03 H04 恩诺沙星 ND ND 0.280 ND 诺氟沙星 ND ND 0.246 ND 磺胺二甲嘧啶 11.5 ND ND 0.078 磺胺噻唑 11.7 ND ND ND 磺胺甲嘧啶 8.92 0.952 ND 0.201 磺胺吡啶 0.442 1.192 ND ND 林可霉素 ND ND ND 0.596 含量单位: ng/L; ND: 未检出. -
[1] 童蕾, 姚林林, 刘慧, 等. 抗生素在地下水系统中的环境行为及生态效应研究进展[J]. 生态毒理学报, 2016, 11(2): 27-36. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201602005.htm
Tong L, Yao L L, Liu H, et al. Review on the environmental behavior and ecological effect of antibiotics in groundwater system [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 27-36. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201602005.htm
[2] 高立红, 史亚利, 厉文辉, 等. 抗生素环境行为及其环境效应研究进展[J]. 环境化学, 2013, 32(9): 1619-1633. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201309004.htm
Gao L H, Shi Y L, Li W H, et al. Environmental behavior and impacts of antibiotics[J]. Environmental Chemistry, 2013, 32(9): 1619-1633. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201309004.htm
[3] 杨常青, 王龙星, 侯晓虹, 等. 大辽河水系河水中16种抗生素的污染水平分析[J]. 色谱, 2012, 30(8): 756-762. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201208003.htm
Yang C Q, Wang L X, Hou X H, et al. Analysis of pollution levels of 16 antibiotics in the river water of Daliao River water system[J]. Chinese Journal of Chromatography, 2012, 30(8): 756-762. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201208003.htm
[4] 陈卫平, 彭程伟, 杨阳, 等. 北京市地下水中典型抗生素分布特征与潜在风险[J]. 环境科学, 2017, 38(12): 5074-5080. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201712022.htm
Chen W P, Peng C W, Yang Y, et al. Distribution characteristics and risk analysis of antibiotic in the groundwater in Beijing[J]. Environmental Science, 2017, 38(12): 5074-5080. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201712022.htm
[5] 章强, 辛琦, 朱静敏, 等. 中国主要水域抗生素污染现状及其生态环境效应研究进展[J]. 环境化学, 2014, 33(7): 1075-1083. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201407003.htm
Zhang Q, Xin Q, Zhu J M, et al. The antibiotic contaminations in the main water bodies in China and the associated environmental and human health impacts[J]. Environmental Chemistry, 2014, 33 (7): 1075-1083. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201407003.htm
[6] 郭欣妍, 王娜, 郝利君, 等. 超高效液相色谱/串联质谱法同时测定水、土壤及粪便中25种抗生素[J]. 分析化学, 2015, 43(1): 13-20. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201501004.htm
Guo X Y, Wang N, Hao L J, et al. Simultaneous detection of 25 kinds of veterinary antibiotics in soil, manure and water samples using liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2015, 43(1): 13-20. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201501004.htm
[7] Pan M, Chu L M. Transfer of antibiotics from wastewater or animal manure to soil and edible crops[J]. Environmental Pollution, 2017, 231: 829-836. doi: 10.1016/j.envpol.2017.08.051
[8] 陈桂淋, 苏帆, 武广元. 我国地下水抗生素污染及风险评估研究进展[J]. 广东化工, 2018, 45(3): 111-113. doi: 10.3969/j.issn.1007-1865.2018.03.054
Chen G L, Su F, Wu G Y. Review on the pollution and risk assessment of antibiotics in the groundwater system in China[J]. Guangdong Chemical Industry, 2018, 45(3): 111-113. doi: 10.3969/j.issn.1007-1865.2018.03.054
[9] 王晓光, 郭常来, 何海洋, 等. 地下水降落漏斗分类研究[J]. 地质与资源, 2019, 28(5): 487-492. doi: 10.3969/j.issn.1671-1947.2019.05.012 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8425.shtml
Wang X G, Guo C L, He H Y, et al. Study on the classification of groundwater depression cone[J]. Geology and Resources, 2019, 28(5): 487-492. doi: 10.3969/j.issn.1671-1947.2019.05.012 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8425.shtml
[10] 祁彦洁, 刘菲. 地下水中抗生素污染检测分析研究进展[J]. 岩矿测试, 2014, 33(1): 1-11. doi: 10.3969/j.issn.0254-5357.2014.01.002
Qi Y J, Liu F. Analysis of antibiotics in groundwater: a review [J]. Rock and Mineral Analysis, 2014, 33(1): 1-11. doi: 10.3969/j.issn.0254-5357.2014.01.002
[11] 张俊, 罗阳, 潘曼曼, 等. 水体中磺胺、四环素、喹诺酮类抗生素检测方法[J]. 中国环境监测, 2013, 29(4): 111-115. doi: 10.3969/j.issn.1002-6002.2013.04.024
Zhang J, Luo Y, Pan M M, et al. Analysis of sulfonamide, tetracycline and quinolones antibiotics in surface water[J]. Environmental Monitoring in China, 2013, 29(4): 111-115. doi: 10.3969/j.issn.1002-6002.2013.04.024
[12] 张金, 宗栋良, 常爱敏, 等. 水环境中典型抗生素SPE-UPLC- MS/MS检测方法的建立[J]. 环境化学, 2015, 34(8): 1446-1452. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201508008.htm
Zhang J, Zong D L, Chang A M, et al. Determination of common antibiotics in aquatic environment by solid-phase extraction and ultra pressure liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)[J]. Environmental Chemistry, 2015, 34(8): 1446-1452. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201508008.htm
[13] Kim C, Ryu H D, Chung E G, et al. A review of analytical procedures for the simultaneous determination of medically important veterinary antibiotics in environmental water: Sample preparation, liquid chromatography, and mass spectrometry[J]. Journal of Environmental Management, 2018, 217: 629-645. doi: 10.1016/j.jenvman.2018.04.006
[14] 孙琴, 徐律, 丁士明, 等. 薄膜扩散梯度技术测量砷的影响因素及其应用[J]. 中国环境科学, 2016, 36(5): 1482-1490. doi: 10.3969/j.issn.1000-6923.2016.05.030
Sun Q, Xu L, Ding S M, et al. Environmental influences on the measurement of dissolved arsenic using Zr-oxide DGT[J]. China Environmental Science, 2016, 36(5): 1482-1490. doi: 10.3969/j.issn.1000-6923.2016.05.030
[15] 王艳平, 关庆伟, 李超, 等. 巢湖沉积物有效态磷与硫的DGT原位同步分析研究[J]. 环境科学学报, 2015, 35(8): 2512-2518. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201508027.htm
Wang Y P, Guan Q W, Li C, et al. A study of in situ synchronous measurement of available phosphorus and sulfur in the sediments of lake Chaohu by diffusive gradients in thin films (DGT)[J]. Acta Scientiae Circumstantiae, 2015, 35(8): 2512- 2518. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201508027.htm
[16] Chen C E, Zhang H, Jones K C. A novel passive water sampler for in situ sampling of antibiotics[J]. Journal of Environmental Monitoring, 2012, 14(6): 1523-1530. doi: 10.1039/c2em30091e
[17] 宋志廷, 赵玉杰, 周其文, 等. 不同土壤孔隙度对DGT提取Cd有效态含量的影响研究[J]. 中国农学通报, 2016, 32(12): 139- 144. doi: 10.11924/j.issn.1000-6850.casb15110071
Song Z T, Zhao Y J, Zhou Q W, et al. Effects of soil porosity on available Cd content extracted by DGT[J]. Chinese Agricultural Science Bulletin, 2016, 32(12): 139-144. doi: 10.11924/j.issn.1000-6850.casb15110071
[18] 荣楠, 朱家亮, 周道坤, 等. 黑臭河流沉积物磷、铁、硫的DGT同步分析研究[J]. 环境科学学报, 2018, 38(7): 2599-2606. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201807007.htm
Rong N, Zhu J L, Zhou D K, et al. A study of synchronous measurement of phosphorous, iron and sulfur in the sediment of malodorous black rivers by diffusive gradients in thin films (DGT)[J]. Acta Scientiae Circumstantiae, 2018, 38(7): 2599- 2606. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201807007.htm
[19] Chen C E, Zhang H, Ying G G, et al. Evidence and recommendations to support the use of a novel passive water sampler to quantify antibiotics in wastewaters[J]. Environmental Science & Technology, 2013, 47(23): 13587-13593.
[20] Chen W, Li Y Y, Chen C E, et al. DGT passive sampling for quantitative in situ measurements of compounds from household and personal care products in waters[J]. Environmental Science & Technology, 2017, 51(22): 13274-13281.
-