TIME-FREQUENCY ELECTROMAGNETIC DATA CORRECTION PROCESSING AND RESERVOIR EVALUATION BASED ON DISPERSION TEST ANALYSIS
-
摘要:
时频电磁法(TFEM)作为一项比较成熟的油气检测技术,在国内外已得到了广泛的应用.在时频电磁解释过程中,主要采用电阻率和极化率联合定性检测,不能给出含油气的定量评价,并把地层电阻率视作与温度、压力无关的量.但随着地层深度增加,地层的温度、压力变化会对电阻率产生影响.由温度、压力的变化引起的电性变化会给储层解释带来误差.通过对岩石的频散测试,分析岩石电性参数随频率变化的规律,并结合岩石的频散性质研究了地层电阻率受温度、压力影响后的变化特征,而后通过拟合获得岩石电阻率与温度、压力的近似关系式.利用恰当的温压-电阻率函数,对时频电磁储层数据进行电阻率校正; 利用校正后的电阻率数据,基于Archie公式计算研究区储层目标段的饱和度,并对储层进行了定量评价.
Abstract:Time-frequency electromagnetic method(TFEM), as a relatively mature oil and gas detection technology, has been widely used both in China and overseas. In the process of time-frequency electromagnetic interpretation, the combined qualitative detection of resistivity and polarizability is commonly used. However, such method cannot quantitatively evaluate the oil and gas content, and regards the formation resistivity as a quantity independent of temperature and pressure. In fact, with the increase of formation depth, the temperature and pressure changes of the formation will affect the resistivity, which would cause errors to reservoir interpretation. This paper analyzes the variation law of rock electrical parameters with frequency through the frequency dispersion test of rock. Combined with the dispersion properties of rock, the variation characteristics of formation resistivity affected by temperature and pressure are studied, and then the approximate relationship between rock resistivity and temperature/pressure is obtained by fitting. Using appropriate temperature-pressure-resistivity function, the time-frequency electromagnetic reservoir data are corrected for resistivity, by which the saturation of the target reservoir in the study area is calculated with the Archie formula, and the reservoir is quantitatively evaluated.
-
Key words:
- TFEM /
- dispersion test /
- resistivity correction /
- reservoir saturation /
- oil-gas evaluation
-
-
图 5 研究区温压梯度曲线(据文献[17]修改)
Figure 5.
表 1 实验岩心参数表
Table 1. Parameters of cores for experiment
岩心编号 岩性 长度/cm 直径/cm 密度/(g/cm3) 孔隙度/% 114 灰色白云质灰岩 4.28 2.5 2.79 0.6 116 灰色白云质灰岩 4.56 2.45 2.85 0.8 120 灰色灰岩 3.95 2.46 2.74 0.5 137 灰色含砂质硅质灰岩 1.67 2.46 2.83 1.5 表 2 研究区地层压力分类表
Table 2. Classification of formation pressure in the study area
地层压力分类 常压 高压 超高压 压力系数 0.95~1.1 1.1~1.5 >1.5 -
[1] 何展翔. 人工源时间频率电磁测深方法: 中国, CN03150098.6[P]. 2003-08-01.
He Z X. Artificial source time frequency electromagnetic bathymetry: CN, CN03150098.6[P]. 2003-08-01.
[2] He Z X, Suo X D, Hu Z Z, et al. Time-frequency electromagnetic method for exploring favorable deep igneous rock targets: A case study from North Xinjiang[J]. Journal of Environmental and Engineering Geophysics, 2019, 24(2): 215-224. doi: 10.2113/JEEG24.2.215
[3] 赵一丹, 何展翔, 郑求根, 等. 时频电磁法含油气有利区预测在T盆地的应用[J]. 石油地球物理勘探, 2014, 49(S1): 228-232. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2014S1042.htm
Zhao Y D, He Z X, Zheng Q G, et al. Favorable oil and gas target prediction with time-frequency electromagnetic method in T Basin[J]. Oil Geophysical Prospecting, 2014, 49(S1): 228-232. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2014S1042.htm
[4] 孙志华, 付吉林, 杨书江, 等. 时频电磁法勘探在尼日尔A区块的应用效果[J]. 石油地球物理勘探, 2012, 47(S1): 147-151. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2012S1027.htm
Sun Z H, Fu J L, Yang S J, et al. TFEM applications in the Block A, Niger[J]. Oil Geophysical Prospecting, 2012, 47(S1): 147-151. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2012S1027.htm
[5] 张春贺, 刘雪军, 周惠, 等. 基于时频电磁法的富有机质页岩层系勘探进一步研究[J]. 石油物探, 2015, 54(5): 627-634. doi: 10.3969/j.issn.1000-1441.2015.05.016
Zhang C H, Liu X J, Zhou H, et al. A step forward study for the exploration of organic-rich shale by using time-frequency electromagnetic method (TFEM)[J]. Geophysical Prospecting for Petroleum, 2015, 54(5): 627-634. doi: 10.3969/j.issn.1000-1441.2015.05.016
[6] 张锐锋, 严良俊, 孙社敏, 等. 时频电磁法时域激电参数提取与应用[J]. 石油地球物理勘探, 2016, 51(6): 1227-1232.
Zhang R F, Yan L J, Sun S M, et al. IP parameter extraction from TFEM data in the time domain[J]. Oil Geophysical Prospecting, 2016, 51(6): 1227-1232.
[7] 石昆法. 可控源音频大地电磁法理论与应用[M]. 北京: 科学出版社, 1999.
Shi K F. Theory and application of controlled source audio magnetotelluric method[M]. Beijing: Science Press, 1999. (in Chinese)
[8] 邓少贵, 范宜仁, 仝兆岐, 等. 不同矿化度下泥质砂岩岩石物理特性研究[C]//第三届中俄测井国际学术交流会论文集. 中国石油学会, 2004.
Deng S G, Fan Y R, Tong Z Q, et al. Research on petrophysical properties of argillaceous sandstone with different salinity[C]//The 3rd Sino-Russian Logging International Symposium. Chinese Petroleum Society, 2004. (in Chinese)
[9] 曲斌, 刘玉, 邵英梅, 等. 储层状态气体岩石电阻率测试技术及变化规律研究[C]//第四届全国石油地质实验技术及实验室管理工作交流会议论文集. 上海: 中国石油天然气股份有限公司, 2001.
Qu B, Liu Y, Shao Y M, et al. Research on test technology and variation law of resistivity of gas rock in reservoir state[C]//Proceedings of the 4th National Petroleum Geology Experiment Technology and Laboratory Management Exchange Conference. Shanghai: China National Petroleum Corporation, 2002. (in Chinese)
[10] 高妍, 沈金松, 何展翔, 等. TFEM探测JZ地区潜山内幕目标的模拟及试验[J]. 石油地球物理勘探, 2015, 50(6): 1207-1212.
Gao Y, ShenJ S, He Z X, et al. Target detection simulation and experiments in buried hills with TFEM method[J]. Oil Geophysical Prospecting, 2015, 50(6): 1207-1212.
[11] 宋延杰, 邢丽波. 新型混合泥质砂岩通用双电层电导率模型[J]. 大庆石油学院学报, 2005, 29(6): 7-10, 16. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY200506002.htm
Song Y J, Xing L B. New generalized electric double layer conductivity model for laminated and dispersed shaly sands[J]. Journal of Daqing Petroleum Institute, 2005, 29(6): 7-10, 16. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY200506002.htm
[12] 沈金松, 苏本玉, 王智茹, 等. 泥质砂岩电导率模型的分析及对比[J]. 测井技术, 2008, 32(5): 385-393. doi: 10.3969/j.issn.1004-1338.2008.05.001
Shen J S, Su B Y, Wang Z R, et al. Analysis and contrast of the shaly sandstone conductivity model[J]. Well Logging Technology, 2008, 32(5): 385-393. doi: 10.3969/j.issn.1004-1338.2008.05.001
[13] Zhao Y S, He Z X, Tian G. Reservoir evaluation method for complex resistivity using the borehole-surface electromagnetic method: A case study of an igneous reservoir in the K exploration area, China[J]. Journal of Applied Geophysics, 2021, 184: 104251. doi: 10.1016/j.jappgeo.2020.104251
[14] 曲昕馨, 董卫斌, 刘子豪, 等. 基于温压与电阻率关系的电磁反演校正技术研究[C]//2019年油气地球物理学术年会论文集. 南京: 中国地球物理学会油气地球物理专业委员会, 2019: 463-466.
Qu X X, Dong W B, Liu Z H, et al. Research on electromagnetic inversion correction technology based on the relationship between temperature-pressure and resistivity[C]//Proceedings of the Annual Conference on Oil and Gas Geophysics. Nanjing: Oil and Gas Geophysics Committee of Chinese Geophysical Society, 2019: 463- 466. (in Chinese)
[15] 贝东. 四川盆地川西坳陷高异常地层压力分布特征[J]. 矿物岩石, 1995, 15(1): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS199501007.htm
Bei D. Distributing characteristics of abnormal pressure in the West Sichuan depression of Sichuan Basin[J]. Journal of Mineralogy and Petrology, 1995, 15(1): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS199501007.htm
[16] 刘震, 张万选, 曾宪斌, 等. 含油气盆地地温-地压系统浅析[J]. 天然气地球科学, 1996, 7(1): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX199601005.htm
Liu Z, Zhang W X, Zeng X B, et al. Analysis of system of geotemperature-geopressure in oil-gas basin[J]. Natural Gas Geoscience, 1996, 7(1): 34-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX199601005.htm
[17] 刘震, 朱文奇, 孙强, 等. 中国含油气盆地地温-地压系统[J]. 石油学报, 2012, 33(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201201000.htm
Liu Z, Zhu W Q, Sun Q, et al. Characteristics of geotemperature- geopressure systems in petroliferous basins of China[J]. Acta Petrolei Sinica, 2012, 33(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201201000.htm
[18] 王建波, 冯明刚, 严伟, 等. 页岩气储层含水饱和度影响因素及计算方法——以焦石坝区块五峰组-龙马溪组为例[J]. 天然气技术与经济, 2020, 14(6): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TRJJ202006004.htm
Wang J B, Feng M G, Yan W, et al. Influential factors and calculation methods for water saturation in shale gas: Examples from Wufeng Formation-Longmaxi Formation, Jiaoshiba block[J]. Natural Gas Technology, 2020, 14(6): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TRJJ202006004.htm
[19] Winsauer W O, Shearin Jr A M, Masson P H, et al. Resistivity of brine-saturated sands in relation to pore geometry[J]. AAPG Bulletin, 1952, 36(2): 253-277. https://citeseerx.ist.psu.edu/showciting?cid=13317228
[20] Archie G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Transactions of the AIME, 1942, 146(1): 54-62. doi: 10.2118/942054-G
-