SEDIMENTARY ENVIRONMENT AND GEOCHEMISTRY OF THE MIDDLE JURASSIC WANBAO FORMATION IN SUOLUN AREA, MIDDLE DAXINGANLING MOUNTAINS
-
摘要:
为了深入研究大兴安岭地区中生代断陷盆地构造背景,利用野外地质调查、岩石地球化学等方法,系统研究了索伦地区中侏罗统万宝组的沉积环境及地球化学性质. 结果表明万宝组为一套分布于山间断陷盆地的陆相沉积碎屑岩建造,为辫状河三角洲相沉积环境. 地球化学特征显示索伦地区万宝组富集大离子亲石元素(如Th、U、LREE)和Zr、Hf元素,亏损高场强元素(如Nb、Ta、P、Ti)和Ba、Sr元素,稀土元素配分曲线具有轻稀土富集的右倾特征. 万宝组沉积物源主要来自中酸性岩浆岩源区,具有大陆岛弧构造背景特征,可能与蒙古-鄂霍茨克洋的南向俯冲弧后伸展作用有关.
Abstract:To further research the tectonic settings of Mesozoic fault basin in Daxinganling Mountains, on the basis of field geological survey and petrogeochemical analysis, this paper systematically studies the sedimentary environment and geochemical properties of Middle Jurassic Wanbao Formation in Suolun area. The results indicate that Wanbao Formation is a set of continental sedimentary clastic rocks distributed in the intermountain fault basin, with the sedimentary environment of braided river delta facies. The Wanbao Formation is geochemically characterized by enrichment of LILEs (Th, U, LREE), Zr and Hf, and depletion of HFSEs (Nb, Ta, P, Ti), as well as Ba and Sr. The REE patterns reveal right-dipping LREE enrichment. The sediment provenance mainly comes from acid-intermediate magmatic rocks, with the characteristics of continental island arc tectonic setting, which may be related to the southward subduction and back-arc extension of Mongolia-Okhotsk Ocean.
-
-
图 4 万宝组砂岩原始地幔标准化微量元素蛛网图(据文献[15])
Figure 4.
图 5 万宝组砂岩球粒陨石标准化稀土元素配分模式图(据文献[16])
Figure 5.
图 6 索伦地区万宝组砂岩物源区性质函数判别图解(据文献[19])
Figure 6.
图 7 万宝组砂岩La/Th-Hf沉积物源判别图解(据文献[20])
Figure 7.
图 9 索伦地区万宝组砂岩微量元素构造环境判别图解(据文献[21])
Figure 9.
表 1 索伦地区万宝组砂岩主量元素及微量元素分析结果
Table 1. Contents of major and trace elements in the sandstones from Wanbao Formation
样品号 TWT03-1 TWT03-2 TWT03-3 TWT03-4 TWT03-5 PM111-38-1 PM111-38-2 PM111-39-1 PM111-39-2 SiO2 62.16 62.04 61.88 62.30 61.81 70.73 71.72 63.57 66.81 TiO2 0.98 0.96 0.99 0.97 1.00 0.33 0.43 0.65 0.68 Al2O3 15.57 15.56 15.60 15.54 15.52 13.37 13.84 19.63 15.89 Fe2O3 1.70 1.92 1.92 1.67 1.57 0.46 0.21 1.42 0.89 FeO 3.62 3.41 3.46 3.59 3.86 2.38 2.34 3.32 5.17 MnO 0.09 0.09 0.09 0.09 0.09 0.23 0.14 0.05 0.06 MgO 2.45 2.55 2.40 2.40 2.45 0.59 0.51 1.18 1.13 CaO 4.12 3.94 4.09 3.82 4.20 4.29 3.50 0.31 0.52 Na2O 4.02 4.19 3.92 4.02 3.84 3.92 3.65 0.77 1.44 K2O 3.10 3.11 3.10 3.08 3.06 2.43 2.23 5.69 4.41 P2O5 0.23 0.23 0.23 0.23 0.23 0.08 0.07 0.04 0.08 LOI 2.07 2.07 2.09 2.07 1.97 0.86 1.03 3.40 2.71 Total 100.11 100.07 99.77 99.78 99.60 99.67 99.67 100.03 99.79 Zr 209 212 211 207 211 142 200 260 276 Hf 4.21 4.22 4.15 4.22 4.16 3.09 3.31 6.39 5.02 Nb 10.6 10.6 9.82 10.6 10.9 10.0 11.8 16.7 16.2 Ta 0.23 0.59 0.49 0.51 0.58 0.76 0.63 1.78 1.98 Th 9.16 9.13 9.26 8.98 9.13 12.3 13.2 19.2 14.5 Co 19.5 19.0 19.1 19.2 19.4 11.2 11.2 10.3 17.8 Cr 26.3 28.0 23.5 28.2 26.5 15.4 17.6 31.0 32.0 Ga 17.0 16.8 17.2 17.2 17.9 14.8 15.6 25.4 19.1 Rb 69.7 71.6 74.4 69.9 66.4 63.0 67.9 223 207 U 1.46 1.47 1.43 1.46 1.52 2.56 3.12 5.21 4.70 V 75.4 74.6 74.8 75.9 80.6 28.9 30.8 64.4 54.6 Sc 14.8 15.0 15.1 15.2 15.2 8.33 7.83 15.3 11.1 Sr 624 624 622 630 617 437 299 76.5 66.5 Ni 21.2 20.5 19.6 19.1 19.2 9.81 9.38 18.8 25.6 Ba 866 897 879 931 872 457 405 748 501 La 26.60 27.75 26.66 27.04 27.2 28.4 32.91 44.40 34.32 Ce 56.96 54.20 53.58 54.08 54.6 50.5 63.66 93.56 73.90 Pr 6.53 6.93 6.67 6.81 6.8 6.6 7.42 10.96 8.62 Nd 25.42 26.57 26.02 26.19 26.5 25.5 26.95 41.54 32.94 Sm 5.17 5.31 5.22 5.24 5.33 5.06 5.19 8.21 6.78 Eu 1.33 1.52 1.45 1.35 1.30 1.06 0.98 1.27 0.95 Gd 4.36 4.46 4.36 4.27 4.46 4.43 4.56 6.93 5.76 Tb 0.63 0.61 0.61 0.62 0.61 0.68 0.65 1.06 0.85 Dy 3.35 3.62 3.39 3.40 3.48 4.19 3.88 6.57 5.01 Ho 0.68 0.65 0.66 0.67 0.66 0.77 0.75 1.31 1.01 Er 2.15 2.19 2.14 2.09 2.11 2.74 2.51 4.43 3.36 Tm 0.29 0.29 0.28 0.28 0.29 0.40 0.38 0.61 0.49 Yb 1.83 1.86 1.83 1.84 1.86 2.47 2.57 4.18 3.16 Lu 0.27 0.27 0.28 0.28 0.27 0.38 0.37 0.61 0.47 Y 20.47 20.11 19.82 19.79 19.7 25.8 23.37 41.12 31.02 测试单位:自然资源部东北矿产资料监督检测中心. 含量单位:主量元素为%,微量元素为10-6. 表 2 索伦地区万宝组碎屑岩与各种构造背景下砂岩的有关参数对比
Table 2. Comparison of parameters between clastic rocks from Wanbao Formation in Suolun area and sandstones under various tectonic setting
构造背景 物源区类型 La/10-6 Ce/10-6 ∑REE/10-6 La/Yb ∑LREE/∑HREE 大洋岛弧 未切割的岩浆弧 8±1.7 19±3.7 58±10 4.2±1.3 3.8±0.9 大陆岛弧 切割的岩浆弧 27±4.5 59±8.2 146±20 11.0±3.6 7.7±1.7 活动大陆边缘 基底隆起 37 78 186 12.5 9.1 被动大陆边缘 克拉通内构造 39 85 210 15.9 8.5 索伦地区万宝组平均值 30.6 61.7 151.5 13.2 8.5 据文献[22]. -
[1] 陈树旺, 李永飞. 松辽盆地外围油气地质调查进展[J]. 地质与资源, 2020, 29(4): 401. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202103003.htm
Chen S W, Li Y F. Progress of the geological survey for oil-gas in surroundings of Songliao Basin[J]. Geology and Resources, 2020, 29 (4): 401. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202103003.htm
[2] 陈树旺, 张健, 公繁浩, 等. 内蒙古突泉盆地侏罗系油气发现及工作展望[J]. 地质与资源, 2015, 24(1): 1-6. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8695.shtml
Chen S W, Zhang J, Gong F H, et al. Discovery and prospects of the Jurassic oil and gas in Tuquan Basin, Inner Mongolia[J]. Geology and Resources, 2015, 24(1): 1-6. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8695.shtml
[3] 李世臻, 周新桂, 王丹丹, 等. 内蒙古突泉盆地突参1井原油地球化学特征与油源分析[J]. 地质通报, 2015, 34(10): 1946-1951. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201510018.htm
Li S Z, Zhou X G, Wang D D, et al. Geochemical characteristics of crude oil and oil-source correlation of well Tucan 1, Tuquan Basin, Inner Mongolia[J]. Geological Bulletin of China, 2015, 34(10): 1946-1951. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201510018.htm
[4] 苏飞, 张海华, 张健, 等. 内蒙古突泉盆地突D1井中侏罗统万宝组烃源岩地球化学特征[J]. 地质与资源, 2017, 26(4): 377-382, 396. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8556.shtml
Su F, Zhang H H, Zhang J, et al. Geochemistry of the hydrocarbon source rock of middle Jurassic Wanbao formation from Well TD1 in Tuquan Basin, Inner Mongolia[J]. Geology and Resources, 2017, 26 (4): 377-382, 396. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8556.shtml
[5] 王辉, 朱占平, 宋土顺, 等. 突泉盆地中侏罗统万宝组沉积环境与烃源岩特征[J]. 断块油气田, 2019, 26(6): 687-692. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201906003.htm
Wang H, Zhu Z P, Song T S, et al. Sedimentary environment and characteristics of hydrocarbon source rock of Middle Jurassic Wanbao Formation in Tuquan Basin[J]. Fault-Block Oil & Gas Field, 2019, 26(6): 687-692. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201906003.htm
[6] 张渝金, 张超, 吴新伟, 等. 龙江盆地西缘中侏罗统万宝组物源分析: 来自碎屑锆石年代学和岩石地球化学的制约[J]. 古地理学报, 2019, 21(3): 490-504. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201903010.htm
Zhang Y J, Zhang C, Wu X W, et al. Provenance analysis of the Middle Jurassic Wanbao Formation on western edge of Longjiang Basin: Constraints from detrital Zircon ages and geochemistry characteristics[J]. Journal of Palaeogeography, 2019, 21(3): 490-504. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201903010.htm
[7] 黄始琪, 董树文, 胡健民, 等. 蒙古-鄂霍次克构造带的形成与演化[J]. 地质学报, 2016, 90(9): 2192-2205. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201609011.htm
Huang S Q, Dong S W, Hu J M, et al. The formation and tectonic evolution of the Mongol-Okhotsk Belt[J]. Acta Geologica Sinica, 2016, 90(9): 2192-2205. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201609011.htm
[8] 彭玉鲸, 齐成栋, 周晓东, 等. 吉黑复合造山带古亚洲洋向滨太平洋构造域转换: 时间标志与全球构造的联系[J]. 地质与资源, 2012, 21(3): 261-265. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9048.shtml
Peng Y J, Qi C D, Zhou X D, et al. Transition from Paleo-Asian ocean domain to Circum-pacific ocean domain for the Ji-Hei composite Orogenic Belt: time mark and relationship to global tectonics[J]. Geology and Resources, 2012, 21(3): 261-265. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9048.shtml
[9] 王五力, 郭胜哲. 中国东北古亚洲与古太平洋构造域演化与转换[J]. 地质与资源, 2012, 21(1): 27-34. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9009.shtml
Wang W L, Guo S Z. The evolution and transformation of Paleo-Asia and Paleo-Pacific tectonic domain of Northeast China[J]. Geology and Resources, 2012, 21(1): 27-34. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9009.shtml
[10] 许文良, 孙晨阳, 唐杰, 等. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 2019, 44(5): 1620-1646. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201905017.htm
Xu W L, Sun C Y, Tang J, et al. Basement nature and tectonic evolution of the Xing'an-Mongolian Orogenic Belt[J]. Earth Science, 2019, 44(5): 1620-1646. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201905017.htm
[11] 杜宝安. 甘肃靖远王家山中侏罗世孢粉及其地层、古地理意义[J]. 地质论评, 1985, 31(2): 131-141. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP198502005.htm
Du B A. Sporo-pollen assemblages from the middle Jurassic in the Wangjiashan basin of Jingyuan, Gansu, and their stratigraphic and paleogeographic significance[J]. Geological Review, 1985, 31(2): 131-141. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP198502005.htm
[12] 刘兆生. 新疆沙湾县中侏罗世西山窑组孢粉组合[J]. 古生物学报, 1990, 29(1): 63-83, 149-152. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX199001005.htm
Liu Z S. Sporo-pollen assemble age from middle Jurassic Xishanyao formation of Shawan, Xinjiang, China[J]. Acta Palaeontologica Sinica, 1990, 29(1): 63-83, 149-152. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX199001005.htm
[13] 王永栋, 江德昕, 杨惠秋, 等. 新疆吐鲁番-鄯善地区中侏罗世孢粉组合[J]. 植物学报, 1998, 40(10): 969-976. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWXB810.013.htm
Wang Y D, Jiang D X, Yang H Q, et al. Middle Jurassic spore pollen assemblages from Turpan Shanshan area, Xinjiang[J]. Acta Botanica Sinica, 1998, 40(10): 969-976. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWXB810.013.htm
[14] 陈建强, 周洪瑞, 王训练. 沉积学及古地理学教程[M]. 北京: 地质出版社, 2004.
Chen J Q, Zhou H R, Wang X L. Sedimentology and sedimentary palaeogeography[M]. Beijing: Geological Publishing House, 2004.
[15] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes [J]. Geological Society, London, Special Publications, 1989, 42 (1): 313-345.
[16] Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies[J]. Developments in Geochemistry, 1984, 2: 63-114.
[17] 陈小双, 吕奥, 宋贺民, 等. 新疆阿合奇地区志留系砂岩地球化学特征及大地构造背景[J]. 古地理学报, 2018, 20(2): 271-284. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201802009.htm
Chen X S, Lü A, Song H M, et al. Geochemical characteristics and tectonic history of the Silurian sandstones in Akeqi area, Xinjiang[J]. Journal of Palaeogeography, 2018, 20(2): 271-284. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201802009.htm
[18] 周成林, 唐友军, 刘彬. 大兴安岭中南段下二叠统寿山沟组典型泥岩地球化学特征及其地质意义[J]. 地质与资源, 2019, 28(2): 140-148. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8389.shtml
Zhou C L, Tang Y J, Liu B. Typical mudstone of the Lower Permian Shoushangou Formation in middle-south Daxinganling Mountains: Geochemical characteristics and geological implications[J]. Geology and Resources, 2019, 28(2): 140-148. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8389.shtml
[19] Roser B P, Korsch R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 1988, 67(1/2): 119-139.
[20] Gu X X, Liu J M, Zheng M H, et al. Provenance and tectonic setting of the Proterozoic turbidites in Hunan, South China: Geochemical evidence[J]. Journal of Sedimentary Research, 2002, 72(3): 393-407.
[21] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins [J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193.
[22] Bhatia M R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control[J]. Sedimentary Geology, 1985, 45(1/2): 97-113.
[23] 李锦轶, 高立明, 孙桂华, 等. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J]. 岩石学报, 2007, 23(3): 565-582. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703006.htm
Li J Y, Gao L M, Sun G H, et al. Shuangjingzi middle Triassic syncollisional crust-derived granite in the east Inner Mongolia and its constraint on the timing of collision between Siberian and Sino-Korean Paleo-plates[J]. Acta Petrologica Sinica, 2007, 23(3): 565-582. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703006.htm
[24] 任战利, 崔军平, 史政, 等. 中国东北地区晚古生代构造演化及后期改造[J]. 石油与天然气地质, 2010, 31(6): 734-742. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201006009.htm
Ren Z L, Cui J P, Shi Z, et al. The late Paleozoic tectonic evolution and later transformation in Northeast China[J]. Oil & Gas Geology, 2010, 31(6): 734-742. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201006009.htm
[25] 许文良, 王枫, 裴福萍, 等. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 2013, 29(2): 339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302002.htm
Xu W L, Wang F, Pei F P, et al. Mesozoic tectonic regimes and regional ore-forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations [J]. Acta Petrologica Sinica, 2013, 29(2): 339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302002.htm
[26] Zhang S H, Zhao Y, Song B, et al. Contrasting Late Carboniferous and Late Permian-Middle Triassic intrusive suites from the northern margin of the North China craton: geochronology, petrogenesis, and tectonic implications[J]. GSA Bulletin, 2009, 121(1/2): 181-200.
[27] 陈志广, 张连昌, 卢百志, 等. 内蒙古太平川铜钼矿成矿斑岩时代、地球化学及地质意义[J]. 岩石学报, 2010, 26(5): 1437-1449. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201005010.htm
Chen Z G, Zhang L C, Lu B Z, et al. Geochronology and geochemistry of the Taipingchuan copper-molybdenum deposit in Inner Mongolia, and its geological significances[J]. Acta Petrologica Sinica, 2010, 26(5): 1437-1449. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201005010.htm
[28] 曾维顺, 周建波, 董策, 等. 蒙古-鄂霍茨克洋俯冲的记录: 额尔古纳地区八大关变质杂岩的证据[J]. 岩石学报, 2014, 30(7): 1948-1960. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407010.htm
Zeng W S, Zhou J B, Dong C, et al. Subduction record of Mongol-Okhotsk Ocean: constrains from Badaguan metamorphic complexes in the Erguna Massif, NE China[J]. Acta Petrologica Sinica, 2014, 30 (7): 1948-1960. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407010.htm
-