大兴安岭北部十五里桥金矿床流体包裹体特征及矿床成因

孙彦峰, 周传芳, 王久懿, 梁中恺, 姜平, 杜海双. 大兴安岭北部十五里桥金矿床流体包裹体特征及矿床成因[J]. 地质与资源, 2022, 31(5): 606-613. doi: 10.13686/j.cnki.dzyzy.2022.05.004
引用本文: 孙彦峰, 周传芳, 王久懿, 梁中恺, 姜平, 杜海双. 大兴安岭北部十五里桥金矿床流体包裹体特征及矿床成因[J]. 地质与资源, 2022, 31(5): 606-613. doi: 10.13686/j.cnki.dzyzy.2022.05.004
SUN Yan-feng, ZHOU Chuan-fang, WANG Jiu-yi, LIANG Zhong-kai, JIANG Ping, DU Hai-shuang. FLUID INCLUSION CHARACTERISTICS AND GENESIS OF SHIWULIQIAO GOLD DEPOSIT IN NORTHERN DAXINGANLING MOUNTAINS[J]. Geology and Resources, 2022, 31(5): 606-613. doi: 10.13686/j.cnki.dzyzy.2022.05.004
Citation: SUN Yan-feng, ZHOU Chuan-fang, WANG Jiu-yi, LIANG Zhong-kai, JIANG Ping, DU Hai-shuang. FLUID INCLUSION CHARACTERISTICS AND GENESIS OF SHIWULIQIAO GOLD DEPOSIT IN NORTHERN DAXINGANLING MOUNTAINS[J]. Geology and Resources, 2022, 31(5): 606-613. doi: 10.13686/j.cnki.dzyzy.2022.05.004

大兴安岭北部十五里桥金矿床流体包裹体特征及矿床成因

  • 基金项目:
    中国地质调查局项目“黑龙江省大兴安岭十五里桥、腰站林场、依西肯幅、开库康、下鱼亮子、绥安站、瓦干、闰王店岛、双合站1∶5万综合地质调查”(编号12120115041801),“大兴安岭山区生态地质调查”(编号DD20191014)
详细信息
    作者简介: 孙彦峰(1988—),男,硕士,工程师,主要从事区域地质调查、生态地质调查工作,通信地址黑龙江省哈尔滨市香坊区保健副路1号,E-mail//sunyanfeng1988@126.com
  • 中图分类号: P618.5

FLUID INCLUSION CHARACTERISTICS AND GENESIS OF SHIWULIQIAO GOLD DEPOSIT IN NORTHERN DAXINGANLING MOUNTAINS

  • 十五里桥金矿床位于上黑龙江Au(Cu-Mo)成矿带内,上黑龙江盆地南缘、腰站断陷北缘与二十二站隆起南缘交接地带. 矿床可划分为4个成矿阶段:Ⅰ—脉状黄铁矿-石英阶段;Ⅱ—浸染状黄铁矿±黄铜矿-石英阶段;Ⅲ—浸染状黄铁矿±黄铜矿±闪锌矿±方铅矿-石英阶段;Ⅳ—少硫化物-碳酸盐阶段. 其中多金属硫化物-石英阶段为主成矿阶段. 流体包裹体研究表明,Ⅱ、Ⅲ阶段发育富气相和富液相型流体包裹体,Ⅱ阶段流体发生不混溶,均一温度介于283~394 ℃之间,盐度介于2.56%~7.99%(NaCl当量,质量分数)之间;Ⅲ阶段均一温度介于251~298 ℃,盐度介于2.56%~5.09%(NaCl当量,质量分数),属于简单的NaCl-H2O体系. H-O同位素指示成矿流体主要为大气降水;S同位素指示成矿物质主要来自深源岩浆硫. 十五里桥金矿床为火山岩容矿的浅成中温热液型矿床.

  • 加载中
  • 图 1  十五里桥金矿床大地构造位置和区域地质图(据文献[4-5])

    Figure 1. 

    图 2  十五里桥金矿床地质图

    Figure 2. 

    图 3  十五里桥金矿床矿石显微照片

    Figure 3. 

    图 4  十五里桥金矿床流体包裹体显微照片

    Figure 4. 

    图 5  十五里桥金矿床流体包裹体均一温度、盐度直方图

    Figure 5. 

    图 6  十五里桥金矿床流体包裹体均一温度、盐度散点图

    Figure 6. 

    图 7  十五里桥金矿床δDW-δ18OW体系图(据文献[11])

    Figure 7. 

    图 8  十五里桥金矿床流体包裹体P-T-W相图(据文献[26])

    Figure 8. 

    表 1  十五里桥金矿床流体包裹体特征及参数

    Table 1.  Fluid inclusion characteristics and parameters of Shiwuliqiao gold deposit

    成矿阶段 包裹体类型 测试数量 大小/μm 气液比/% Tm/℃ Th/℃ 盐度/% 密度/(g/cm3
    富气相型 26 7~15 55~90 -1.5~-2.7 283~394 2.56~4.48 0.55~0.77
    富液相型 25 5~10 20~40 -2.0~-5.1 317~392 3.37~7.99 0.58~0.73
    富液相型 35 6~15 20~25 -1.5~-3.1 251~298 2.56~5.09 0.75~0.83
    下载: 导出CSV
  • [1]

    刚绪军, 宋丙剑. 上黑龙江盆地火山岩分布控矿因素分析[J]. 甘肃冶金, 2010, 32(4): 89-91, 146. doi: 10.3969/j.issn.1672-4461.2010.04.030

    Gang X J, Song B J. On Heilongjiang Basin the volcanic rock divided bringing under control ore factor analysis[J]. Gansu Metallurgy, 2010, 32(4): 89-91, 146. doi: 10.3969/j.issn.1672-4461.2010.04.030

    [2]

    李向文, 杨言辰, 叶松青, 等. 黑龙江省塔河县十五里桥金矿床地质特征及控矿因素[J]. 地质与勘探, 2014, 50(1): 77-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201401009.htm

    Li X W, Yang Y C, Ye S Q, et al. Geological characteristics and ore-controlling factors of the Shiwuliqiao gold deposit in Tahe, Heilongjiang Province[J]. Geology and Exploration, 2014, 50(1): 77-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201401009.htm

    [3]

    陈卓, 李向文, 张胜江, 等. 黑龙江十五里桥金矿龙江组火山岩地球化学特征及构造背景分析[J]. 地质与资源, 2019, 28(5): 413-422. doi: 10.3969/j.issn.1671-1947.2019.05.002 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8415.shtml

    Chen Z, Li X W, Zhang S J, et al. Geochemistry and tectonic setting of the volcanic rocks of Longjiang Formation in Shiwuliqiao gold deposit, Heilongjiang Province[J]. Geology and Resources, 2019, 28(5): 413-422. doi: 10.3969/j.issn.1671-1947.2019.05.002 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8415.shtml

    [4]

    张顺, 林春明, 吴朝东, 等. 黑龙江漠河盆地构造特征与成盆演化[J]. 高校地质学报, 2003, 9(3): 411-419. doi: 10.3969/j.issn.1006-7493.2003.03.011

    Zhang S, Lin C M, Wu C D, et al. Tectonic characteristics and basin evolution of the Mohe Basin, Heilongjiang Province[J]. Geological Journal of China Universities, 2003, 9(3): 411-419. doi: 10.3969/j.issn.1006-7493.2003.03.011

    [5]

    李向文, 张志国, 王可勇, 等. 大兴安岭北段宝兴沟金矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1071-1084. doi: 10.13278/j.cnki.jjuese.20170169

    Li X W, Zhang Z G, Wang K Y, et al. Characteristics of ore-forming fluid and genesis of Baoxinggou gold deposit in north of Great Xing'an Range[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(4): 1071-1084. doi: 10.13278/j.cnki.jjuese.20170169

    [6]

    Potter R W Ⅱ, Brown D L. The volumetric properties of aqueous sodium chloride solutions from 0 ℃ to 500 ℃ at pressures up to 2000 bars based on a regression of available data in the literature[C]. U.S. Geological Survey Bulletin, 1978, 1421-C3, 6.

    [7]

    Hall D L, Sterner S M, Bodnar R J. Freezing point depression of NaCl-KCl-H2O solutions[J]. Economic Geology, 1988, 83(1): 197-202. doi: 10.2113/gsecongeo.83.1.197

    [8]

    卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京: 科学出版社, 2004: 147-282.

    Lu H Z, Fan H R, Ni P, et al. Fluid inclusions[M]. Beijing: Science Press, 2004: 147-282. (in Chinese)

    [9]

    Wang Z L, Yang L Q, Guo L N, et al. Fluid immiscibility and gold deposition in the Xincheng deposit, Jiaodong Peninsula, China: A fluid inclusion study[J]. Ore Geology Reviews, 2015, 65: 701-717. doi: 10.1016/j.oregeorev.2014.06.006

    [10]

    Clayton R N, O'Neil J R, Mayeda T K. Oxygen isotope exchange between quartz and water[J]. Journal of Geophysical Research, 1972, 77(17): 3057-3067. doi: 10.1029/JB077i017p03057

    [11]

    Hedenquist J W, Lowenstern J B. The role of magmas in the formation of hydrothermal ore deposits[J]. Nature, 1994, 370(6490): 519-527. doi: 10.1038/370519a0

    [12]

    李春诚, 吕新彪, 杨永胜, 等. 大兴安岭北段古利库金(银)矿床流体包裹体特征与成矿机制[J]. 地质科技情报, 2016, 35(2): 152-160. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201602032.htm

    Li C C, Lü X B, Yang Y S, et al. Fluid inclusions and metallogenic mechanism of Guliku Au-Ag deposit in Northern Daxinganling[J]. Geological Science and Technology Information, 2016, 35(2): 152-160. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201602032.htm

    [13]

    吕军, 王建民, 岳帮江, 等. 三道湾子金矿床流体包裹体及稳定同位素地球化学特征[J]. 地质与勘探, 2005, 41(3): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200503008.htm

    Lü J, Wang J M, Yue B J, et al. Fluid inclusion and stable isotope geochemistry of Sandaowanzi gold deposit[J]. Geology and Prospecting, 2005, 41(3): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200503008.htm

    [14]

    Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Economic Geology, 1972, 67(5): 551-578. doi: 10.2113/gsecongeo.67.5.551

    [15]

    Chaussidon M, Lorand J P. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France): An ion microprobe study[J]. Geochimica et Cosmochimica Acta, 1990, 54(10): 2835-2846. doi: 10.1016/0016-7037(90)90018-G

    [16]

    郑永飞, 陈江峰. 稳定同位素地球化学[M]. 北京: 科学出版社, 2000: 218-247.

    Zheng Y F, Chen J F. Stable isotope geochemistry[M]. Beijing: Science Press, 2000: 218-247. (in Chinese)

    [17]

    闫永生, 李向文, 聂春雨, 等. 黑龙江富克山地区水系沉积物测量地球化学特征及找矿远景预测[J]. 物探与化探, 2013, 37(1): 23-29. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201301005.htm

    Yan Y S, Li X W, Nie C Y, et al. Geochemical characteristics and metallogenic prospective prognosis of Fukeshan region in Heilongjiang Province based on stream sediment survey[J]. Geophysical and Geochemical Exploration, 2013, 37(1): 23-29. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201301005.htm

    [18]

    Urusova M A. Volume properties of aqueous solutions of sodium chloride at elevated temperatures and pressures[J]. Russian Journal of Inorganic Chemistry, 1975, 20(11): 1717-1721.

    [19]

    Haas J L Jr. Physical properties of the coexisting phases and thermochemical properties of the H2O component in boiling NaCl solutions[R]. Washington DC: United States Department of the Interior, Geological Survey, 1976: 75-674.

    [20]

    Bodnar R J, Burnham C W, Sterner S M. Synthetic fluid inclusions in natural quartz. Ⅲ. Determination of phase equilibrium properties in the system H2O-NaCl to 1000 ℃ and 1500 bars[J]. Geochimica et Cosmochimica Acta, 1985, 49(9): 1861-1873.

    [21]

    辛存林, 徐明儒, 安国堡, 等. 川西南马头山铜金矿床地质和流体包裹体特征及成因[J]. 中国地质, 2019, 46(6): 1556-1572. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201906021.htm

    Xin C L, Xu M R, An G B, et al. Deposit geology, fluid inclusion characteristics and ore genesis of the Matoushan Cu-Au deposit in southwest Sichuan Province[J]. Geology in China, 2019, 46(6): 1556-1572. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201906021.htm

    [22]

    Ramboz C, Pichavant M, Weisbrod A. Fluid immiscibility in naturalprocesses: Use and misuse of fluid inclusion data: Ⅱ. Interpretation of fluid inclusion data in terms of immiscibility[J]. Chemical Geology, 1982, 37(1/2): 29-48.

    [23]

    代军治. 辽宁青城子地区金、银矿床成矿流体特征及成因探讨[D]. 长春: 吉林大学, 2005.

    Dai J Z. Characteristics of ore-forming fluids and discussion on the genesis of Au, Ag deposits in Qingchengzi region, Liaoning Province [D]. Changchun: Jilin University, 2005.

    [24]

    Roedder E. Fluid inclusions. Volume 12: Reviews in mineralogy[M]. Washington DC: Mineralogical Society of America, 1984: 1-644.

    [25]

    Roedder E, Bodnar R J. Geologic pressure determinations from fluid inclusion studies[J]. Annual Review of Earth and Planetary Sciences, 1980, 8(1): 263-301.

    [26]

    Bouzari F, Clark A H. Prograde evolution and geothermal affinities of a major porphyry copper deposit: The Cerro Colorado hypogene protore, Iregion, Northern Chile[J]. Economic Geology, 2006, 101 (1): 95-134.

  • 加载中

(8)

(1)

计量
  • 文章访问数:  1720
  • PDF下载数:  84
  • 施引文献:  0
出版历程
收稿日期:  2021-10-18
修回日期:  2021-11-21
刊出日期:  2022-10-25

目录