FRACTURING LAYER SELECTION FOR VERTICAL WELL IN LACUSTRINE SHALE MATRIX RESERVOIR: A Case Study of SYY3 Well in Sanzhao Sag of Songliao Basin
-
摘要:
湖相泥页岩基质储层是中国页岩油赋存的主要载体, 相对于夹层型和裂缝型储层更难被压裂改造和实现工业开发, 因而压裂层位的选择至关重要. 本文以松辽盆地三肇凹陷松页油3井为例, 建立了一套湖相泥页岩基质储层直井压裂选层方法. 通过录井、测井解释优选出青山口组一段中的Ⅰ类页岩油层, 对Ⅰ类页岩油层的电性、物性、含油气性、烃源岩性、脆性、可压性6项指标进行综合分析, 基于上述6项指标, 利用层次分析法对所有Ⅰ类页岩油层进行综合排序, 确定了27、25和23号层为最有利页岩油层. 松页油3井针对上述页岩油层进行了压裂试油, 实现了三肇凹陷页岩油工业油流突破, 证实选层方法可行有效, 可推广应用于湖相基质型页岩油的甜点层优选和水平井部署.
Abstract:The lacustrine shale matrix reservoir is the main carrier for shale oil in China, but it is more difficult for fracturing reformation and industrial development compared with interlayered and fractured reservoirs. Therefore, the selection of fracturing layers is of vital importance. Taking the SYY3 well in Sanzhao sag of Songliao Basin as an example, the paper establishes a set of fracturing layer selection method for vertical wells in lacustrine shale matrix reservoir. First, the Type Ⅰ shale oil reservoir in the 1st member of Qingshankou Formation in SYY3 well is optimized by well logging and interpretation data. Then 6 indicators including electrical property, physical property, oil-gas possibility, source rock lithology, brittleness and fracability of Type Ⅰ shale oil reservoir are comprehensively analyzed. Finally, the comprehensive ranking of Type Ⅰ shale oil reservoir is conducted by analytic hierarchy process based on the above 6 indicators, and Nos. 27, 25 and 23 layers are determined as the most favorable shale oil reservoirs. Fracturing and oil testing of the above shale oil reservoirs are performed in SYY3 well, which has achieved a breakthrough in the industrial oil flow of shale oil in Sanzhao sag. It is proved that the method is feasible and effective, and can be applied to the optimization of sweet spot layer and horizontal well deployment of lacustrine matrix shale oil.
-
Key words:
- fracturing /
- analytic hierarchy process /
- shale oil /
- matrix reservoir /
- lacustrine shale /
- Qingshankou Formation /
- Songliao Basin
-
-
表 1 松页油3井青一段Ⅰ类页岩油层电性特征表
Table 1. Electric parameters for the K2qn1 shale oil reservoir of Type Ⅰ in SYY3 well
解释层号 井段/m 厚度/m 声波时差/(μs/m) 补偿中子/pu 密度/(g/cm3) 地层真电阻率/Ωm 19 1978.4~1989.5 11.1 373.4 24.9 2.42 6.7 21 1999.0~2005.0 6.0 371.4 26.1 2.41 6 22 2005.0~2014.0 9.0 357 24.5 2.44 6.6 23 2014.0~2026.1 12.1 384.5 26.5 2.41 7.3 25 2034.4~2048.3 13.9 384 26.8 2.38 16 26 2048.3~2054.3 6.0 387 27.4 2.41 10.3 27 2054.3~2056.5 2.2 353.4 20.5 2.46 7.4 表 2 松页油3井青一段Ⅰ类页岩油层物性特征表
Table 2. Physical parameters for the K2qn1 shale oil reservoir of Type Ⅰ in SYY3 well
解释层号 孔隙度/% 渗透率/mD 19 7.7 0.244 21 7.7 0.225 22 7.0 0.150 23 8.3 0.330 25 8.1 0.300 26 6.6 0.135 27 8.2 0.315 表 3 松页油3井青一段Ⅰ类页岩油层含油气性特征表
Table 3. Oil-gas bearing possibility for the K2qn1 shale oil reservoir of Type Ⅰ in SYY3 well
解释层号 含油饱和度/% S1/10-3 全烃值/% 19 30.2 7.6 1.16 21 26.0 6.0 1.17 22 22.9 5.8 0.91 23 37.6 5.9 0.96 25 30.2 9.0 2.00 26 4.1 9.9 2.97 27 28.9 8.6 1.78 表 4 松页油3井青一段Ⅰ类页岩油层烃源岩特征数据表
Table 4. Source rock characteristics for the K2qn1 shale oil reservoir of Type Ⅰ in SYY3 well
解释层号 TOC/% Ro/% Tmax/℃ 19 3.6 0.84 445.09 21 3.5 0.87 445.61 22 2.5 0.88 446.08 23 4.6 0.89 445.28 25 4.5 0.94 449.48 26 3.0 0.98 445.40 27 5.1 0.97 449.67 表 5 松页油3井青一段Ⅰ类页岩油层矿物含量及脆性指数表
Table 5. Mineral content and brittleness index for the K2qn1 shale oil reservoir of Type Ⅰ in SYY3 well
解释层号 黏土矿物/% 石英/% 长石/% 方解石/% 铁白云石/% 黄铁矿/% 脆性指数/% 19 40.7 22.5 24.9 7.2 2.9 1.8 33.2 21 47.3 23.0 21.1 4.4 2.8 1.4 30.6 22 42.5 22.6 20.3 9.9 3.2 1.4 36.3 23 43.5 22.2 22.5 5.6 4.8 1.5 33.0 25 39.9 25.2 20.5 9.1 3.6 1.7 38.5 26 45.0 29.3 15.7 4.6 4.2 1.3 38.5 27 35.8 31.8 18.9 10.3 1.4 1.7 44.3 表 6 松页油3井青一段Ⅰ类页岩油层可压性表
Table 6. Fracturing indexes for the K2qn1 shale oil reservoir of Type Ⅰ in SYY3 well
解释层号 泊松比 杨氏模量/104 MPa 破裂压力/MPa 19 0.31 1.33 40.91 21 0.31 1.28 41.79 22 0.31 1.39 42.27 23 0.29 1.27 40.23 25 0.29 1.26 40.88 26 0.30 1.23 42.20 27 0.29 1.23 40.89 表 7 松页油3井青一段压裂选层参数归一化数据表
Table 7. Normalized parameter of fracturing layer selection in the 1st member of Qingshankou Formation in SYY3 well
层号 电性归一化值 物性归一化值 含油气性归一化值 烃源岩性归一化值 脆性归一化值 可压性归一化值 19 0.55 0.81 0.63 0.52 0.52 0.58 21 0.59 0.78 0.53 0.58 0.44 0.49 22 0.42 0.59 0.47 0.48 0.61 0.54 23 0.69 1.00 0.60 0.75 0.51 0.70 25 0.93 0.94 0.76 0.85 0.67 0.65 26 0.79 0.52 0.65 0.76 0.67 0.48 27 0.91 0.97 0.71 0.98 0.84 0.62 表 8 压裂选层指标重要性表
Table 8. Importance ranking of fracturing layer selection indicators
指标 属性 重要性 含油气性 反映储层中原油的性质和含量,是物质基础 最重要 烃源岩性 反映油层的生烃潜力 极其重要 物性 反映储层的储集空间和渗流能力 非常重要 电性 间接反映储层的孔隙度和含油气性特征 比较重要 脆性 影响压裂造缝效果 一般重要 可压性 反映储层能否被有效改造 稍微重要 C1 C2 C3 C4 C5 C6 C1 1 1/2 1/4 1/3 3 4 C2 2 1 1/3 1/2 4 5 C3 4 3 1 2 6 7 C4 3 2 1/2 1 5 6 C5 1/3 1/4 1/6 1/5 1 2 C6 1/4 1/5 1/7 1/6 1/2 1 表 9 压裂选层各项指标权重
Table 9. Weight coefficient of fracturing layer selection indicators
指标 电性 物性 含油气性 烃源岩性 脆性 可压性 权重 0.0968 0.1674 0.3864 0.2583 0.0514 0.0397 表 10 松页油3井青一段Ⅰ类页岩油层压裂选层有利性分析表
Table 10. Favorability analysis of fracturing layer selection for the K2qn1 shale oil reservoir of Type Ⅰ in SYY3 well
层号 电性加权归一化值 物性加权归一化值 含油气性加权归一化值 烃源岩性加权归一化值 脆性加权归一化值 可压性加权归一化值 压裂选层有利性 排名 19 0.0532 0.1349 0.2330 0.1353 0.0265 0.0232 0.6061 5 21 0.0575 0.1300 0.1979 0.1491 0.0226 0.0195 0.5767 6 22 0.0405 0.0980 0.1753 0.1244 0.0311 0.0214 0.4907 7 23 0.0666 0.1680 0.2288 0.1938 0.0263 0.0276 0.7111 3 25 0.0897 0.1566 0.2816 0.2188 0.0345 0.0257 0.8069 2 26 0.0762 0.0869 0.2387 0.1957 0.0346 0.0192 0.6514 4 27 0.0877 0.1623 0.2640 0.2539 0.0433 0.0248 0.8359 1 -
[1] 张金川, 林腊梅, 李玉喜, 等. 页岩油分类与评价[J]. 地学前缘, 2012, 19(5): 322-331. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205032.htm
Zhang J C, Lin L M, Li Y X, et al. Classification and evaluation of shale oil[J]. Earth Science Frontiers, 2012, 19(5): 322-331. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205032.htm
[2] 邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm
Zou C N, Yang Z, Cui J W, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm
[3] 姜在兴, 张文昭, 梁超, 等. 页岩油储层基本特征及评价要素[J]. 石油学报, 2014, 35(1): 184-196. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201401027.htm
Jiang Z X, Zhang W Z, Liang C, et al. Characteristics and evaluation elements of shale oil reservoir[J]. Acta Petrolei Sinica, 2014, 35(1): 184-196. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201401027.htm
[4] 孙超, 姚素平. 页岩油储层孔隙发育特征及表征方法[J]. 油气地质与采收率, 2019, 26(1): 153-164. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901016.htm
Sun C, Yao S P. Pore structure and characterization methods of shale oil reservoir[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 153-164. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901016.htm
[5] 杨雷, 金之钧. 全球页岩油发展及展望[J]. 中国石油勘探, 2019, 24 (5): 553-559. doi: 10.3969/j.issn.1672-7703.2019.05.002
Yang L, Jin Z J. Global shale oil development and prospects[J]. China Petroleum Exploration, 2019, 24(5): 553-559. doi: 10.3969/j.issn.1672-7703.2019.05.002
[6] 周庆凡, 金之钧, 杨国丰, 等. 美国页岩油勘探开发现状与前景展望[J]. 石油与天然气地质, 2019, 40(3): 469-477. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903004.htm
Zhou Q F, Jin Z J, Yang G F, et al. Shale oil exploration and production in the US: Status and outlook[J]. Oil & Gas Geology, 2019, 40(3): 469-477. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903004.htm
[7] 边瑞康, 武晓玲, 包书景, 等. 美国页岩油分布规律及成藏特点[J]. 西安石油大学学报(自然科学版), 2014, 29(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201401002.htm
Bian R K, Wu X L, Bao S J, et al. Distribution law and reservoir forming characteristics of shale oil in America[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2014, 29(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201401002.htm
[8] 张欣, 刘吉余, 侯鹏飞. 中国页岩油的形成和分布理论综述[J]. 地质与资源, 2019, 28(2): 165-170. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8392.shtml
Zhang X, Liu J Y, Hou P F. A Review on the formation and distribution theories of the shale oil in China[J]. Geology and Resources, 2019, 28(2): 165-170. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8392.shtml
[9] 胡素云, 赵文智, 侯连华, 等. 中国陆相页岩油发展潜力与技术对策[J]. 石油勘探与开发, 2020, 47(4): 819-828. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202004021.htm
Hu S Y, Zhao W Z, Hou L H, et al. Development potential and technical strategy of continental shale oil in China[J]. Petroleum Exploration and Development, 2020, 47(4): 819-828. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202004021.htm
[10] 王倩茹, 陶士振, 关平. 中国陆相盆地页岩油研究及勘探开发进展[J]. 天然气地球科学, 2020, 31(3): 417-427. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202003012.htm
Wang Q R, Tao S Z, Guan P. Progress in research and exploration & development of shale oil in continental basins in China[J]. Natural Gas Geoscience, 2020, 31(3): 417-427. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202003012.htm
[11] 卢双舫, 薛海涛, 王民, 等. 页岩油评价中的若干关键问题及研究趋势[J]. 石油学报, 2016, 37(10): 1309-1322. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201610012.htm
Lu S F, Xue H T, Wang M, et al. Several key issues and research trends in evaluation of shale oil[J]. Acta Petrolei Sinica, 2016, 37 (10): 1309-1322. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201610012.htm
[12] 杨建国, 李士超, 姚玉来, 等. 松辽盆地北部陆相页岩油调查取得重大突破[J]. 地质与资源, 2020, 29(3): 300. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10208.shtml
Yang J G, Li S C, Yao Y, et al. Significant breakthrough in the continental shale oil survey in northern Songliao Basin[J]. Geology and Resources, 2020, 29(3): 300. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10208.shtml
[13] 柳波, 吕延防, 冉清昌, 等. 松辽盆地北部青山口组页岩油形成地质条件及勘探潜力[J]. 石油与天然气地质, 2014, 35(2): 280-285. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201402019.htm
Liu B, Lü Y F, Ran Q C, et al. Geological conditions and exploration potential of shale oil in Qingshankou Formation, northern Songliao Basin[J]. Oil & Gas Geology, 2014, 35(2): 280-285. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201402019.htm
[14] 柳波, 石佳欣, 付晓飞, 等. 陆相泥页岩层系岩相特征与页岩油富集条件——以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例[J]. 石油勘探与开发, 2018, 45(5): 828-838. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805009.htm
Liu B, Shi J X, Fu X F, et al. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system: A case study of organic-rich shale in first member of Cretaceous Qingshankou Formation in Gulong sag, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2018, 45(5): 828-838. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805009.htm
[15] 章钰, 孟凡顺. 基于声波测井资料确定泥质砂岩储层孔隙度的方法研究[J]. 内蒙古石油化工, 2008(18): 82-84. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH200818035.htm
Zhang Y, Meng F S. Method research of porosity argillaceous sandstone based on acoustic logging data[J]. Inner Mongolia Petrochemical Industry, 2008(18): 82-84. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH200818035.htm
[16] 吕斯端, 夏宏泉, 文晓峰. 延长组致密油储层流体性质测井识别方法[J]. 测井技术, 2017, 41(2): 211-216. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201702019.htm
Lyu S D, Xia H Q, Wen X F. Identification of reservoir fluid properties of tight oil with logs for Yanchang Group[J]. Well Logging Technology, 2017, 41(2): 211-216. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201702019.htm
[17] 蒋云箭. 裂缝-孔洞型储层测井流体识别新方法[J]. 测井技术, 2017, 41(6): 676-679. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201706010.htm
Jiang Y J. New method of fluid type identification for fracture-vug type reservoirs[J]. Well Logging Technology, 2017, 41(6): 676-679. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201706010.htm
[18] 任颖惠, 闫明琦, 李闻虚, 等. 松辽盆地齐家-古龙凹陷泥页岩特征及成藏期次[J]. 成都理工大学学报(自然科学版), 2019, 46(6): 660-666. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201906003.htm
Ren Y H, Yan M Q, Li W X, et al. Study on shale characteristics and reservoir accumulation period in Qijia-Gulong Depression, Songliao Basin, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2019, 46(6): 660-666. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201906003.htm
[19] 王玉华, 梁江平, 张金友, 等. 松辽盆地古龙页岩油资源潜力及勘探方向[J]. 大庆石油地质与开发, 2020, 39(3): 20-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202003003.htm
Wang Y H, Liang J P, Zhang J Y, et al. Resource potential and exploration direction of Gulong shale oil in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 20-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202003003.htm
[20] 杜江民, 张小莉, 钟高润, 等. 致密油烃源岩有机碳含量测井评价方法优选及应用——以鄂尔多斯盆地延长组长7段烃源岩为例[J]. 地球物理学进展, 2016, 31(6): 2526-2533. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201606023.htm
Du J M, Zhang X L, Zhong G R, et al. Analysis on the optimization and application of well logs identification methods for organic carbon content in source rocks of the tight oil: Illustrated by the example of the source rocks of Chang 7 member of Yanchang Formation in Ordos Basin[J]. Progress in Geophysics, 2016, 31(6): 2526-2533. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201606023.htm
[21] 陈治军, 张佳琪, 牛凌燕, 等. 芳烃参数在湖相烃源岩成熟度评价中的适用性——以银根-额济纳旗盆地中生界烃源岩为例[J]. 石油学报, 2020, 41(8): 928-939. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202008003.htm
Chen Z J, Zhang J Q, Niu L Y, et al. Applicability of aromatic parameters in maturity evaluation of lacustrine source rocks: A case study of Mesozoic source rocks in Yingen-Ejinaqi Basin[J]. Acta Petrolei Sinica, 2020, 41(8): 928-939. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202008003.htm
[22] 王晓东, 王一航, 王永田, 等. 利用矿物含量计算砂岩脆性指数——以鄂尔多斯盆地合水地区长6段致密砂岩储层为例[J]. 成都理工大学学报(自然科学版), 2018, 45(3): 367-373. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201803011.htm
Wang X D, Wang Y H, Wang Y T, et al. A method of computing brittleness index of sandstone by mineral content: A case study of Chang-6 tight sandstone reservoir in Heshui, Ordos Basin, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2018, 45(3): 367-373. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201803011.htm
[23] 夏遵义, 马海洋, 房堃. 渤海湾盆地沾化凹陷陆相页岩储层岩石力学特征及可压裂性研究[J]. 石油实验地质, 2019, 41(1): 134-141. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201901019.htm
Xia Z Y, Ma H Y, Fang K. Rock mechanical properties and fracability of continental shale in Zhanhua Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2019, 41(1): 134-141. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201901019.htm
[24] 王帅帅, 武斌. 层次分析法的研究与应用[J]. 中国科技博览, 2015 (44): 178-179. https://www.cnki.com.cn/Article/CJFDTOTAL-XDWX200902003.htm
Wang S S, Wu B. Research and application of analytic hierarchy process[J]. China Science and Technology Review, 2015(44): 178-179. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDWX200902003.htm
[25] 党海龙, 崔鹏兴, 刘双双, 等. 低渗透油藏压裂选层方法研究及应用[J]. 系统工程理论与实践, 2018, 38(4): 1082-1088. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201804024.htm
Dang H L, Cui P X, Liu S S, et al. Study and application of fracturing selection method in low permeability reservoir[J]. Systems Engineering-Theory & Practice, 2018, 38(4): 1082-1088. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201804024.htm
-