APPLICATION OF REMOTE SENSING TECHNOLOGY IN GEOLOGICAL SURVEY OF VEGETATION-COVERED AREA IN DONGNING, HEILONGJIANG PROVINCE
-
摘要:
针对东宁地区高植被覆盖和基岩出露少的特点,采用不同分辨率遥感影像横向比对的方式,在目视解译的基础上,通过比值分析、波段组合和三维高程渲染等方法,重点分析地形、地貌与岩性之间的联系,并结合室内解译与野外验证建立解译标志.对研究区地层、侵入岩以及断裂构造分别进行解译,取得很好效果.
Abstract:In view of the characteristics of high vegetation coverage and little bedrock exposure in Dongning area, by comparison of remote sensing images with different resolutions, based on the visual interpretation, the authors use the methods of ratio analysis, band combination and 3D elevation rendering to study the relation between topography, geomorphology and lithology, and establish the interpretation marks by combining indoor interpretation and field verification. The stratigraphy, intrusive rocks and fault structures in the area are interpreted respectively. The results are effective.
-
-
表 1 遥感影像数据表
Table 1. Remote sensing image data
数据源 轨道/行列号 获取时间 空间分辨率/m 主要用途 OLI 115/029 2019-10-09 15(全色),30(多光谱) 遥感宏观解译,提取区域构造框架,绘制构造草图 GF-1 5721939 2018-11-06 2.5(全色),8(多光谱) 遥感微观解译,区分地质体细节差异,绘制研究区解译图 5721938 2018-11-06 6206252 2019-03-17 6206251 2019-03-17 6220786 2019-03-17 6220785 2019-03-17 6220784 2019-03-17 表 2 不同岩性解译标志及特征
Table 2. Interpretation signs and characteristics of different lithologies
岩性 影像特征 上新统绥芬斯卡亚组砾岩(N2sf) 主要为亮白色,植被发育较稀疏,地势较平缓,水系发育;主要岩性为砂岩、砾岩(图 8a) 中新统乌斯季-达维多夫斯卡亚组砂岩(N1ud) 植被发育较稀疏,地势较平缓,水系发育;主要岩性为砂岩,与科多金斯卡亚组片岩影像特征差距较大,易于分辨,与绥芬斯卡亚组主要由地势与影纹斑杂情况进行区分(图 8b) 中新统船底山组玄武岩(N1cβ) 主要为土黄色,影纹粗糙,植被覆盖稀疏;与周围花岗闪长岩区别主要为地势平坦,无明显冲沟(图 8c) 下侏罗统绥芬河组安山岩(J1s) 呈土黄色,斑杂状,破碎感强烈,影纹粗糙,与周围罗圈沟组安山质凝灰岩界线明显;水系发育较好,分布杂乱,地势较平坦(图 8d) 上三叠统罗圈沟组安山质凝灰岩(T3l) 呈深土黄色,纹理粗糙,山脊呈浑圆状,延伸较远,走向较稳定,水系冲沟不发育;地势起伏相对晚三叠世二长花岗岩较低,且伴有轻微流纹相(图 8e) 下二叠统下扎维塔组砾岩(P2pp) 主要呈土黄色,地势相对平坦;与附近双桥子组安山岩相比冲沟发育较少,影纹较光滑(图 8f) 下二叠统巴拉巴斯卡亚组砂岩(P2br) 呈土褐色,影纹较为斑杂;与附近绥芬斯卡亚组砾岩相比冲沟发育明显,水系较发育,地势高(图 8g) 下二叠统双桥子组安山岩及凝灰岩(P1s) 呈土黄色,水系较发育,山脊呈次尖楞状,二级水系呈扇形展布;地势相对罗圈沟组凝灰岩起伏较大(图 8h) 志留-泥盆系科多金斯卡亚组砂质泥岩、片岩(S-Dkr) 呈土黄色,地势较高,山脊呈次尖棱状;相对于绥芬斯卡亚组砾岩地势较高,水系冲沟发育(图 8i) 早白垩世二长花岗岩(K1ηγ) 呈土黄色,山脊次棱角状,水系冲沟较发育,走向不稳定,分布较杂乱;相对于罗圈沟组安山质凝灰岩地势较高,界线较明显(图 8j) 晚三叠世—早侏罗世花岗闪长岩(T3 J1γδ) 呈土黄色,山脊呈棱角状,走向较不稳定,水系冲沟发育且切割较深,二级水系呈扇形分布,地势起伏较大(图 8k) 晚三叠世—早侏罗世二长花岗岩(T3 J1ηγ) 呈土黄色,有轻微斑杂状,山脊呈尖棱状,水系冲沟发育,一级水系延伸较短,呈扇形展布(图 8l) 晚三叠世—早侏罗世花岗斑岩(T3 J1γπ) 呈土黄色,影纹较平滑,山脊呈尖棱角状,走向较稳定,沟谷切割较深,水系发育呈平行状展布,地势起伏较大(图 8m) 晚三叠世—早侏罗世石英闪长玢岩(T3 J1σομ) 颜色为土黄色夹杂红色,山脊呈尖棱状(图 8n) 晚三叠世—早侏罗世中粒石英闪长岩(T3 J1δο) 呈浅红色,影纹较粗糙,山脊凹凸不平,地势相对较高,水系冲沟不发育(图 8o) 中二叠世花岗岩(P2γ) 呈土黄绿色,地势明显突出,且水系冲沟不发育;与周围花岗闪长岩区别主要为冲沟不发育且地势起伏更高(图 8p) 中二叠世闪长岩(P2δ) 区内出露较少,主要为土黄色夹杂少量浅红色;与周围科多金斯卡亚组砂质泥岩区别为地势起伏较低,水系冲沟笔直(图 8q) -
[1] 苏然, 赵紫威. 浅析地质勘查中遥感技术的应用与发展[J]. 科技风, 2020(13): 11-12. https://www.cnki.com.cn/Article/CJFDTOTAL-KJFT202013012.htm
Sun R, Zhao Z W. The application and development of remote sensing technology in geological exploration[J]. Technology Wind, 2020(13): 11-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJFT202013012.htm
[2] 李志忠, 穆华一, 刘德长, 等. "遥感先行"服务自然资源调查技术变革与调整[J]. 地质与资源, 2021, 30(2): 153-160. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10279.shtml
Li Z Z, Mu H Y, Liu D C, et al. Remote sensing first: Service for the technological revolution and innovation in natural resources survey[J]. Geology and Resources, 2021, 30(2): 153-160. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10279.shtml
[3] 王大鹏, 李林川, 鲍东明, 等. 遥感在辽宁丹东地区1: 5万区域地质调查中的应用[J]. 地质与资源, 2014, 23(2): 184-187. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8828.shtml
Wang D P, Li L C, Bao D M, et al. Application of RS in the 1: 50000 regional geological survey of Dandong area, Liaoning Province[J]. Geology and Resources, 2014, 23(2): 184-187. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8828.shtml
[4] 栗万荣, 赵强, 阚靖. 基于OLI多光谱数据的遥感解译在黑龙江省长兴乡地质调查中的应用[J]. 中国金属通报, 2018(10): 198-199. https://www.cnki.com.cn/Article/CJFDTOTAL-JSTB201810126.htm
Li W R, Zhao Q, Kan J. Application of remote sensing interpretation based on OLI multispectral data in geological survey of Changxing Township, Heilongjiang Province[J]. China Metal Bulletin, 2018(10): 198-199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSTB201810126.htm
[5] 李娜, 董新丰, 甘甫平, 等. 高光谱遥感技术在基岩区区域地质调查填图中的应用[J]. 地质通报, 2021, 40(1): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202101003.htm
Li N, Dong X F, Gan F P, et al. Application of hyperspectral remote sensing technologyto regional geological survey andmapping in bedrock area[J]. Geological Bulletin of China, 2021, 40(1): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202101003.htm
[6] 曹会, 张廷秀, 李雨柯, 等. 基于中、高分辨率遥感影像的羟基和铁染蚀变信息提取与成矿预测——以吉林市等六幅为例[J]. 地质与资源, 2021, 30(6): 710-715, 706. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10353.shtml
Cao H, Zhang T X, Li Y K, et al. Hydroxyl and iron-stained alteration information extraction and metallogenic prediction based on medium-high-resolution remote sensing images: A case study of six map sheets in Jilin City[J]. Geology and Resources, 2021, 30(6): 710-715, 706. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10353.shtml
[7] 江山, 张渝金, 汪岩, 等. 基于Landsat 8 OLI数据的遥感蚀变异常提取应用研究——以内蒙古阿鲁科尔沁旗地区为例[J]. 地质与资源, 2018, 27(1): 93-98. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8440.shtml
Jiang S, Zhang Y J, Wang Y, et al. Application of alteration anomaly extraction by remote sensing based on Landsat 8 OLI Data: A case study of Ar Horqin Qi, Inner Mongolia[J]. Geology and Resources, 2018, 27(1): 93-98. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8440.shtml
[8] 胡官兵, 刘舫, 党伟, 等. 遥感技术在滇西南植被覆盖区地质填图中的应用[J]. 国土资源遥感, 2019, 31(2): 224-230. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201902032.htm
Hu G B, Liu F, Dang W, et al. Application of remote sensing technology to geological mapping in the vegetation covered area of southwest Yunnan[J]. Remote Sensing for Land & Resources, 2019, 31(2): 224-230. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201902032.htm
[9] 陈圣波, 刘彦丽, 杨倩, 等. 植被覆盖区卫星高光谱遥感岩性分类[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1959-1965. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201206044.htm
Chen S B, Liu Y L, Yang Q, et al. Lithologic classification from hyperspectral data in dense vegetation cover area[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(6): 1959-1965. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201206044.htm
[10] 刘灿, 王宏伟. 高植被覆盖区遥感岩性识别研究[J]. 矿物学报, 2011, 31(S1): 966-967. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1507.htm
Liu C, Wang H W. Study on lithology identification by remote sensing in high vegetation cover area[J]. Journal of Minerals, 2011, 31(S1): 966-967. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1507.htm
[11] 杜韦强. 新疆温泉县扎冷木特一带1: 5万区域地质调查遥感技术应用[D]. 乌鲁木齐: 新疆大学, 2017.
Du W Q. The application of remote sensing technology in the 1: 50000 regional geology and mineral resources survey, Zhalengmute, Xinjiang[D]. Urumqi: Xinjiang University, 2017.
[12] 凤骏. 遥感技术在新疆乌齐里克它鸟一带1: 5万区域地质矿产调查中的应用[D]. 乌鲁木齐: 新疆大学, 2014.
Feng J. Application of remote sensing technology in 1: 50000 regional geological and mineral survey in Wuqilik Taitao area, Xinjiang[D]. Urumqi: Xinjiang University, 2014.
[13] 张磊, 孟令华, 周龙涛. 新疆温泉县牙马特一带1: 5万区域地质调查的遥感技术应用[J]. 山东国土资源, 2020, 36(3): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI202003010.htm
Zhang L, Meng L H, Zhou L T. Application of remote sensing technology in regional geological survey with the scale of 1: 50000 in Yamate area in Wenquan in Xinjiang Uygur Autonomous Region[J]. Shandong Land and Resources, 2020, 36(3): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI202003010.htm
[14] 周慧敏, 郝伟涛. 遥感技术在云南建水地区1: 5万区域地质调查中的应用[J]. 地质学刊, 2019, 43(1): 111-121. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ201901018.htm
Zhou H M, Hao W T. Application of remote sensing to the geological survey at 1: 50000 scale in Jianshui, Yunnan[J]. Journal of Geology, 2019, 43(1): 111-121. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ201901018.htm
[15] 胡官兵, 刘舫, 党伟, 等. 不同尺度遥感数据在乌蒙山西部区域地质调查中的应用[C]//云南省首届青年地质科技论坛优秀学术论文集. 昆明: 云南省科学技术协会, 2017: 10.
Hu G B, Liu F, Dang W, et al. Application of remote sensing data of different scales in regional geological survey of western Wumeng Mountain[C]//Yunnan Provincial Association of Science and Technology. Geological Society of Yunnan Province, 2017: 10. (in Chinese)
[16] 张聪, 包书景, 段文哲. 遥感技术在复杂山区页岩气早期勘探中的应用[J]. 地质与资源, 2014, 23(5): 492-494, 499. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8889.shtml
Zhang C, Bao S J, Duan W Z. Application of remote sensing technology in early exploration for shale gas in complex terrain[J]. Geology and Resources, 2014, 23(5): 492-494, 499. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8889.shtml
[17] 霍润斌, 刘博, 鲁敏, 等. 遥感影像三维可视化在白音吉日嘎拉大队幅1: 5万区域地质调查中的应用[J]. 现代矿业, 2018, 34(7): 67-69. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB201807021.htm
Huo R B, Liu B, Lu M, et al. Application of 3D visualization of remote sensing image in 1: 50000 regional geological survey of Rigala in Baiyinji area[J]. Modern Mining, 2018, 34(7): 67-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB201807021.htm
[18] 邢京磊, 朱杰勇, 王雷. 基于遥感影像的地理特征信息的提取与分析——以云南省会泽县为例[J]. 地质与资源, 2012, 21(2): 250-255. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9046.shtml
Xing J L, Zhu J Y, Wang L. Extraction and analysis of geographical characteristic information based on remote sensing image: A case study of Huize area, Yunnan Province[J]. Geology and Resources, 2012, 21(2): 250-255. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9046.shtml
[19] 钱建平, 伍贵华, 陈宏毅. 现代遥感技术在地质找矿中的应用[J]. 地质找矿论丛, 2012, 27(3): 355-360. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201203016.htm
Qian J P, Wu G H, Chen H Y. The application of modern remote sensing technology to geology and ore exploration[J]. Contributions to Geology and Mineral Resources Research, 2012, 27(3): 355-360. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201203016.htm
[20] 张兴洲, 马志红. 黑龙江东部中-新生代盆地演化[J]. 地质与资源, 2010, 19(3): 191-196. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9255.shtml
Zhang X Z, Ma Z H. Evolution of Mesozoic-Cenozoic basins in the eastern Heilongjiang Province, Northeast China[J]. Geology and Resources, 2010, 19(3): 191-196. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9255.shtml
[21] 杨佳佳, 冯雨林, 孙中任, 等. 基于多源遥感数据的融合算法变换效果对比研究[J]. 地质与资源, 2015, 24(5): 489-495. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8778.shtml
Yang J J, Feng Y L, Sun Z R, et al. Comparative study on the transformation effects of fusion algorithm based on multisource remote sensing data[J]. Geology and Resources, 2015, 24(5): 489-495. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8778.shtml
[22] 赵院冬, 迟效国, 车继英, 等. 延边-东宁地区晚三叠世花岗岩地球化学特征及其大地构造背景[J]. 吉林大学学报(地球科学版), 2009, 39(3): 425-434. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200903010.htm
Zhao Y D, Chi X G, Che J Y, et al. Geochemical characteristics and tectonic setting of Late Triassic granites in Yanbian-Dongning area[J]. Journal of Jilin University (Earth Science Edition), 2009, 39(3): 425-434. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200903010.htm
[23] 林敏. 福建沿海高植被覆盖区构造地质遥感解译应用研究[J]. 福建地质, 2020, 39(4): 294-307. https://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ202004006.htm
Lin M. Research on remote sensing interpretation of structural geology in high plant cover area, Fujian Province[J]. Geology of Fujian, 2020, 39(4): 294-307. https://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ202004006.htm
-