A PRETREATMENT PROCESS FOR DETERMINATION OF MULTIPLE ELEMENTS IN PLANT SAMPLES BASED ON ICP-OES
-
摘要:
在农业生态环境地球化学调查与评价中,植物的化学组成是重要的直接指标,因此对植物样品元素含量进行准确测定具有重要意义.本研究的主要目的是开发一种利用电感耦合等离子体发射光谱(ICP-OES)测定植物样品中多元素的分析方法,同时不需要在光谱测定之前进行费力而繁琐的样品前处理.采用微波消解、电热板消解及超声消解3种方法处理植物样品,利用ICP-OES分别测定植物样品中Ca、Cr、Cu、Fe、Mg、Mn、Ni、Pb、Sr、Zn等10种元素的含量,并对3种方法的消解效果进行比较.结果表明:3种方法的检出限分别为0.042×10-6~0.239×10-6、0.046×10-6~0.237×10-6、0.026×10-6~0.232×10-6;测定待测元素的相对标准偏差均低于10%;相对误差分别为-11%~+13.8%,-22.1%~+8.7%,-13.3%~+8.9%.其中超声消解表现出更低的检出限和较好的准确度,满足DD2005-03《生态地球化学评价样品分析技术要求(试行)》.同时验证了超声消解在实际工作中的可行性.实验证明,王水溶样超声辅助消解是一种简单、快速、准确的样品制备方法,能够满足植物样品分析测试要求.
Abstract:The chemical composition of plants is as an important direct indicator in the geochemical survey and evaluation of agroecological environment. It is of great significance to accurately determine the element content of plant samples. The main purpose of this study is to develop an analytical process for the determination of multiple elements in plant samples using inductively coupled plasma optical emission spectrometry (ICP-OES) without the need for tedious sample pretreatment prior to spectroscopic determination. The plant samples are treated by three methods including microwave digestion, electrothermal plate digestion and ultrasonic digestion. The contents of Ca, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sr and Zn in plant samples are determined respectively by ICP-OES, with comparison of digestion effects of the three methods. The results reveal that the detection limits of three methods are 0.042×10-6-0.239×10-6, 0.046×10-6 -0.237×10-6 and 0.026×10-6-0.232×10-6, respectively. The relative standard deviations of the elements to be measured are all lower than 10%, with the relative errors of -11% to +13.8%, -22.1% to +8.7%, and -13.3% to +8.9%, respectively. Ultrasonic digestion shows a lower detection limit and better accuracy, which meets the requirements of DD2005-03 Technical Requirements for Sample Analysis of Eco-geochemical Evaluation (Trial), and its feasibility in practice is verified. The test proves that dissolving samples in aquaregia with the assisted ultrasonic digestion is a simple, quick and accurate sample preparation method, which can meet the requirements of plant sample analysis.
-
-
表 1 分析元素的ICP-OES测量条件
Table 1. Test conditions of ICP-OES for analyzed elements
参数 指标 泵速 50 rpm 雾化器气流量 0.6 L/min 辅助气流量 0.5 L/min 载气流量 15 L/min 射频功率 1150 W 积分时间 15 s UV/10 s Vis 元素波长 Ca: 317.933 nm, Cr: 205.560 nm, Cu: 324.752 nm,
Fe: 238.204 nm, Mg: 285.213 nm, Mn: 259.372 nm,
Ni: 221.648 nm, Pb: 220.353 nm, Sr: 407.771 nm,
Zn: 206.200 nm表 2 三种消解方式下ICP-OES测定的方法检出限
Table 2. Detection limits of ICP-OES by three digestion methods
元素 微波消解/10-6 电热板消解/10-6 超声消解/10-6 Ca 0.191 0.326 0.186 Cr 0.094 0.177 0.097 Cu 0.077 0.098 0.041 Fe 0.157 0.366 0.151 Mg 0.239 0.247 0.232 Mn 0.103 0.139 0.036 Ni 0.045 0.058 0.029 Pb 0.138 0.171 0.143 Sr 0.042 0.046 0.026 Zn 0.131 0.150 0.137 表 3 三种方法测定的准确度和精密度
Table 3. Accuracy and precision of three digestion methods
标样 元素 标准值 微波消解 电热板消解 超声消解 平均值 RE/% RSD/% 平均值 RE/% RSD/% 平均值 RE/% RSD/% GBW10010a
(大米)Ca 0.007 0.0067 -4.3 6.8 0.0064 -8.6 4.9 0.0074 5.7 3.1 Cr 0.08 — — — — — — — — — Cu 3.0 3.20 6.7 4.0 2.71 -9.7 4.2 2.93 -2.3 3.0 Fe 4.0 3.82 -4.5 3.8 3.27 -13.9 2.9 3.74 -6.5 2.6 Mg 0.013 0.0124 -4.6 5.5 0.0117 -10.0 4.2 0.0136 4.6 2.0 Mn 11.1 11.28 1.6 4.7 11.62 4.7 3.7 10.38 -6.5 5.0 Ni 0.21 0.187 -11.0 4.7 0.191 -9.0 6.1 0.205 -2.4 4.9 Pb 0.10 — — — — — — — — — Sr 0.15 0.156 4.0 3.6 0.163 8.7 9.7 0.159 6.0 5.4 Zn 13.3 13.68 2.9 5.3 12.14 -8.7 5.6 14.21 6.8 3.6 GBW10011a
(小麦)Ca 0.03 0.031 3.3 4.3 0.028 -6.7 10.1 0.027 -10.0 2.9 Cr 0.09 — — — — — — — — — Cu 3.0 2.85 -5.0 4.1 2.75 -8.3 7.4 2.91 -3.0 6.2 Fe 25 26.1 4.4 6.8 21.6 -13.6 9.6 23.8 -4.8 2.3 Mg 0.062 0.061 -1.6 5.5 0.066 6.5 6.8 0.060 -3.2 7.0 Mn 10.0 9.32 -6.8 5.3 9.56 -4.4 4.4 9.27 -7.3 4.8 Ni 0.08 0.073 -8.8 2.9 0.073 -8.8 3.6 0.070 -12.5 4.5 Pb 0.09 — — — — — — — — — Sr 2.6 2.45 -5.8 4.7 2.41 -7.3 4.4 2.52 -3.1 4.2 Zn 12.3 12.77 3.8 5.0 13.15 6.9 6.6 11.82 -3.9 4.1 GBW10013
(黄豆)Ca 0.153 0.151 -1.3 5.7 0.148 -3.3 5.4 0.156 2.0 3.2 Cr 0.28 0.262 -6.4 3.6 0.267 -4.6 4.7 0.264 -5.7 5.5 Cu 10.2 9.73 -4.6 4.5 10.30 1.0 5.7 10.48 2.7 2.4 Fe 139 142.5 2.5 3.1 116.2 -16.4 8.3 120.5 -13.3 2.6 Mg 0.230 0.214 -7.0 7.3 0.208 -9.6 4.1 0.211 -8.3 3.9 Mn 28 29.37 4.9 5.2 29.91 6.8 6.6 28.39 1.4 6.7 Ni 4.0 3.87 -3.3 6.6 3.74 -6.5 3.3 3.83 -4.3 5.6 Pb 0.07 — — — — — — — — — Sr 9.9 10.06 1.6 6.1 9.27 -6.4 5.7 9.55 -3.5 8.0 Zn 38 36.14 -4.9 4.7 37.28 -2.0 4.4 34.21 8.4 4.8 GBW10048
(芹菜)Ca 1.66 1.654 -0.4 8.4 1.617 -2.6 9.1 1.632 -1.7 7.8 Cr 1.35 1.42 5.2 7.3 1.30 -3.7 5.6 1.47 8.9 3.9 Cu 8.2 8.41 2.6 6.9 8.88 8.3 5.8 8.53 4.0 5.5 Fe 597 563 -5.7 6.4 465.1 -22.1 4.0 577 -3.4 5.9 Mg 0.53 0.522 -1.5 3.4 0.546 3.0 8.7 0.528 -0.4 3.4 Mn 45 47.82 6.3 7.2 37.15 -17.4 2.5 39.37 -12.5 6.9 Ni 1.8 1.66 -7.8 6.3 1.54 -14.4 6.1 1.74 -3.3 6.3 Pb 2.7 2.57 -4.8 5.7 2.51 -7.0 7.4 2.90 7.4 4.6 Sr 213 211.7 -0.6 5.4 200.5 -5.8 6.3 199.2 -6.5 3.6 Zn 26 29.6 13.8 4.8 27.4 5.4 3.0 24.1 -7.3 5.0 含量单位: Ca、Mg为10-2, 其他为10-6. -表示低于检出限. 表 4 ICP-OES法测定实际样品中的元素含量
Table 4. Analysis result of element contents in samples detected by ICP-OES
样品 元素 微波消解法 超声消解法 F-test t-test 样品 元素 微波消解法 超声消解法 F-test t-test S1(黄花) Ca 0.352 0.345 1.27 1.19 S2(黄花) Ca 0.350 0.347 1.22 0.51 Cu 4.92 5.23 2.20 1.57 Cu 4.86 4.70 1.01 1.03 Fe 104.5 106.2 1.06 1.18 Fe 96.4 102.1 1.57 2.21 Mg 0.148 0.145 2.32 1.27 Mg 0.143 0.148 2.29 1.00 Mn 18.37 18.25 1.63 0.19 Mn 16.6 17.7 1.18 2.36 Ni 0.780 0.815 2.72 1.76 Ni 0.794 0.735 3.11 1.92 Sr 23.9 25.0 2.44 2.0 Sr 27.0 28.7 1.27 2.72 Zn 23.0 23.5 1.62 1.54 Zn 20.4 20.5 1.09 0.27 S3(水稻) Ca 0.0121 0.0116 1.38 2.20 S4(水稻) Ca 0.0116 0.0121 1.48 1.61 Cr 0.410 0.422 1.93 1.16 Cr 0.438 0.428 2.61 0.75 Cu 2.46 2.51 2.93 2.53 Cu 2.00 1.94 1.44 2.12 Fe 59.6 62.8 1.30 2.17 Fe 25.9 26.5 1.40 1.03 Mg 0.141 0.138 1.15 0.97 Mg 0.140 0.144 1.77 1.50 Mn 31.6 31.8 1.49 0.65 Mn 29.3 28.3 2.16 2.13 Ni 0.462 0.485 4.15 1.94 Ni 0.231 0.238 1.11 1.79 Sr 1.56 1.47 1.21 1.83 Sr 1.18 1.14 2.02 1.67 Zn 16.6 17.1 2.01 0.90 Zn 15.8 17.2 1.94 2.37 S5(高粱) Ca 0.0145 0.0144 1.10 0.21 S6(高粱) Ca 0.0130 0.0128 2.69 0.48 Cr 0.145 0.139 1.65 1.39 Cr 0.168 0.170 2.18 0.54 Cu 3.01 3.06 3.69 1.33 Cu 3.14 3.23 3.54 1.95 Fe 38.6 39.5 1.77 0.63 Fe 45.5 47.5 1.09 1.58 Mg 0.170 0.168 2.69 0.58 Mg 0.190 0.192 3.32 0.79 Mn 18.2 17.9 4.18 2.14 Mn 20.6 20.4 1.44 0.65 Sr 1.99 2.01 3.38 0.73 Sr 1.07 1.07 1.17 0.79 Zn 21.7 21.0 1.00 1.91 Zn 23.84 24.4 2.34 2.15 S7(玉米) Ca 0.0060 0.0059 3.30 0.28 S8(玉米) Ca 0.0049 0.0048 3.73 0.53 Cr 0.113 0.118 1.69 1.84 Cr 0.123 0.118 1.80 1.40 Cu 1.07 1.07 2.12 0.02 Cu 1.22 1.21 2.55 0.31 Fe 18.7 19.3 1.15 1.10 Fe 17.4 16.0 1.37 2.71 Mg 0.131 0.129 1.06 0.73 Mg 0.117 0.114 1.62 0.85 Mn 5.05 5.25 3.18 1.80 Mn 4.87 4.78 3.56 0.61 Sr 0.410 0.420 1.88 1.59 Sr 0.438 0.434 1.42 0.26 Zn 14.0 14.1 1.09 0.27 Zn 14.5 14.6 1.32 0.82 含量单位:Ca、 Mg为10-2,其他为10-6; n=7, P=0.95, F=4.28, t=2.45. -
[1] 梁帅, 朱建新, 戴慧敏, 等. 黑龙江拜泉地区硒元素在土壤-植物系统中的迁移富集规律[J]. 地质与资源, 2021, 30(4): 456-464, 478. doi: 10.13686/j.cnki.dzyzy.2021.04.007 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10316.shtml
Liang S, Zhu J X, Dai H M, et al. Migration and enrichment of selenium in soil-plant system in Baiquan area, Heilongjiang Province[J]. Geology and Resources, 2021, 30(4): 456-464, 478. doi: 10.13686/j.cnki.dzyzy.2021.04.007 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10316.shtml
[2] 丁秋红, 唐韬, 王龄广, 等. 辽宁北部地区岩石-土壤-植物中硒元素地球化学研究[J]. 地质与资源, 2021, 30(5): 570-576, 636. doi: 10.13686/j.cnki.dzyzy.2021.05.007 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10334.shtml
Ding Q H, Tang T, Wang L G, et al. Geochemical study on selenium in rock-soil-plant in northern Liaoning Province[J]. Geology and Resources, 2021, 30(5): 570-576, 636. doi: 10.13686/j.cnki.dzyzy.2021.05.007 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10334.shtml
[3] 端爱玲, 王思远, 董艳红, 等. 微波消解-电感耦合等离子体发射光谱(ICP-OES)法测定植物样品中的磷、硫[J]. 中国无机分析化学, 2021, 11(6): 126-130. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX202106020.htm
Duan A L, Wang S Y, Dong Y H, et al. Determination of phosphorus and sulfur in plants by inductively coupled plasma-optical emission spectrometry with microwave digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(6): 126-130. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX202106020.htm
[4] Shishov A, Gerasimov A, Bulatov A. Deep eutectic solvents based on carboxylic acids for metals separation from plant samples: elemental analysis by ICP-OES[J]. Food Chemistry, 2022, 366: 130634. doi: 10.1016/j.foodchem.2021.130634
[5] Yan C X, Yang X F, Li Z G, et al. Switchable hydrophilicity solvent-based preconcentration for ICP-OES determination of trace lead in environmental samples[J]. Microchemical Journal, 2021, 168: 106529. doi: 10.1016/j.microc.2021.106529
[6] 杨柳, 唐振, 王海娇. 电感耦合等离子体发射光谱法测试地质样品中的基体效应及校正办法[J]. 地质与资源, 2020, 29(3): 289-293. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10205.shtml
Yang L, Tang Z, Wang H J. The matrix effect in geological sample test by ICP-AES and correction method[J]. Geology and Resources, 2020, 29(3): 289-293. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10205.shtml
[7] 于趁, 窦彩云, 侯兰静, 等. 微波消解-电感耦合等离子体质谱法测定辣椒提取物中五种有害元素[J]. 中国食品添加剂, 2022, 33(3): 175-180. doi: 10.19804/j.issn1006-2513.2022.03.023
Yu C, Dou C Y, Hou L J, et al. Determination of five toxic heavy metals in pepper extracts by microwave digestion and inductively coupled plasma mass spectrometry[J]. China Food Additives, 2022, 33(3): 175-180. doi: 10.19804/j.issn1006-2513.2022.03.023
[8] 袁建民, 何璐, 杨晓琼, 等. 干热河谷区余甘子不同器官中19种无机元素分布规律研究[J]. 中国农学通报, 2020, 36(25): 60-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB202025010.htm
Yuan J M, He L, Yang X Q, et al. Distribution of 19 inorganic elements in different organs of phyllanthus emblica in dry-hot valley[J]. Chinese Agricultural Science Bulletin, 2020, 36(25): 60-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB202025010.htm
[9] 何姣姣, 江荣风, 王雁峰, 等. X射线荧光光谱法在测定土壤及植物矿质养分方面的应用[J]. 中国土壤与肥料, 2020(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL202001001.htm
He J J, Jiang R F, Wang Y F, et al. Application of X-ray fluorescence spectroscopy in determination of soil and plant mineral nutrients[J]. Soil and Fertilizer Sciences in China, 2020(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL202001001.htm
[10] 李朝英, 郑路. 盐酸浸提-AAS法测定植物钾钙镁含量的检测条件优化与改进[J]. 中国农学通报, 2019, 35(9): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201909008.htm
Li Z Y, Zheng L. Optimization and improvement of detection conditions for potassium, calcium and magnesium in plants by hydrochloric acid extraction-AAS method[J]. Chinese Agricultural Science Bulletin, 2019, 35(9): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201909008.htm
[11] 周启武, 杨国琴, 张国昌, 等. 入侵植物紫茎泽兰对其根际重金属的富集作用研究[J]. 安徽农业科学, 2020, 48(24): 87-90, 93. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY202024024.htm
Zhou Q W, Yang G Q, Zhang G C, et al. Study on the bioaccumulation ability of Eupatorium adenophorum to heavy metal ions in its rhizosphere soil[J]. Journal of Anhui Agricultural Sciences, 2020, 48(24): 87-90, 93. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY202024024.htm
[12] 时宇, 冉珊珊, 黄黄, 等. 黄石国家矿山公园草本植物重金属富集能力研究[J]. 生态环境学报, 2018, 27(4): 769-775. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201804024.htm
Shi Y, Ran S S, Huang H, et al. Enrichment capability of herbaceous plants in Huangshi National Mine Park[J]. Ecology and Environmental Sciences, 2018, 27(4): 769-775. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201804024.htm
[13] 秦玉燕, 蓝唯, 蒋越华, 等. 高效液相色谱-氢化物发生-原子荧光光谱法测定植物样品中的4种砷形态[J]. 理化检验-化学分册, 2021, 57(1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-NYZL202202012.htm
Qin Y Y, Lan W, Jiang Y H, et al. HPLC-HG-AFS determination of 4 arsenic species in plant samples[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2021, 57(1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-NYZL202202012.htm
[14] 陈海杰, 马娜, 陈卫明, 等. 抑制植物样品消解过程中硒挥发的方法[J]. 分析化学, 2020, 48(9): 1268-1272. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX202009021.htm
Chen H J, Ma N, Chen W M, et al. A method for suppressing volatile loss of selenium in digestion of plant samples[J]. Chinese Journal of Analytical Chemistry, 2020, 48(9): 1268-1272. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX202009021.htm
[15] Kalcsits L A. Non-destructive measurement of calcium and potassium in apple and pear using handheld X-ray fluorescence[J]. Frontiers in Plant Science, 2016, 7: 442.
[16] 藏吉良, 李志伟, 赵伟, 等. 风冷回流消解-电感耦合等离子体质谱法同时测定植物样品中46个元素[J]. 岩矿测试, 2012, 31(2): 247-252. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201202008.htm
Zang J L, Li Z W, Zhao W, et al. Determination of 46 kinds of elements in plant samples by inductively coupled plasma-atomic emission spectrometry with air-cooled reflux digestion[J]. Rock and Mineral Analysis, 2012, 31(2): 247-252. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201202008.htm
[17] 李艳华, 刘军, 李鹏程, 等. 高压密闭消解-氢化物发生原子荧光光谱法测定植物样品中的汞[J]. 当代化工, 2020, 49(11): 2588-2591. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHH202011077.htm
Li Y H, Liu J, Li P C, et al. Determination of hg in plant samples by high pressure closed digestion-hydride generation atomic fluorescence spectrometry[J]. Contemporary Chemical Industry, 2020, 49(11): 2588-2591. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHH202011077.htm
[18] Narin I, Colak H, Turkoglu O, et al. Heavy metals in black tea samples produced in Turkey[J]. Bulletin of Environmental Contamination and Toxicology, 2004, 72(4): 844-849.
[19] Aksuner N, Henden E, Aker Z, et al. Determination of essential and non-essential elements in various tea leaves and tea infusions consumed in Turkey[J]. Food Additives & Contaminants: Part B, 2012, 5(2): 126-132.
[20] 高媛媛, 彭兆丰, 邱海鸥, 等. ICP-OES测定金矿尾矿区优势植物中的重金属元素[J]. 分析试验室, 2016, 35(5): 521-525. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201605006.htm
Gao Y Y, Peng Z F, Qiu H O, et al. Determination of heavy metal elements in dominant plants from Hubei Zigui Yueliangbao gold mine tailings with ICP-OES[J]. Chinese Journal of Analysis Laboratory, 2016, 35(5): 521-525. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201605006.htm
[21] Mullapudi V B K, Chandrasekaran K, Venkateswarlu G, et al. Development of a simple and rapid microwave-assisted extraction method using very dilute solutions of perchloric acid and hydrogen peroxide for the multi-elemental analysis of food materials by ICP-OES: A green analytical method[J]. Microchemical Journal, 2019, 146: 807-817.
[22] Welna M, Szymczycha-Madeja A, Pohl P. A comparison of samples preparation strategies in the multi-elemental analysis of tea by spectrometric methods[J]. Food Research International, 2013, 53(2): 922-930.
[23] Santos H M, Coutinho J P, Amorim F A C, et al. Microwave-assisted digestion using diluted HNO3 and H2O2 for macro and microelements determination in Guarana samples by ICP OES[J]. Food Chemistry, 2019, 273: 159-165.
[24] Muller E I, Muller C C, Souza J P, et al. Green microwave-assisted wet digestion method of carbohydrate-rich foods with hydrogen peroxide using single reaction chamber and further elemental determination using ICP-OES and ICP-MS[J]. Microchemical Journal, 2017, 134: 257-261.
[25] Correia F O, Silva D S, Costa S S L, et al. Optimization of microwave digestion and inductively coupled plasma-based methods to characterize cassava, corn and wheat flours using chemometrics[J]. Microchemical Journal, 2017, 135: 190-198.
[26] Tarantino T B, Barbosa I S, de C Lima D, et al. Microwave-assisted digestion using diluted nitric acid for multi-element determination in rice by ICP OES and ICP-MS[J]. Food Analytical Methods, 2017, 10(4): 1007-1015.
-