黑龙江富源沟晚三叠世中-基性火山岩的厘定及地质意义

王文东, 刘涛, 周传芳, 杨华本, 杜兵盈, 刘宇崴. 黑龙江富源沟晚三叠世中-基性火山岩的厘定及地质意义[J]. 地质与资源, 2023, 32(6): 670-680. doi: 10.13686/j.cnki.dzyzy.2023.06.003
引用本文: 王文东, 刘涛, 周传芳, 杨华本, 杜兵盈, 刘宇崴. 黑龙江富源沟晚三叠世中-基性火山岩的厘定及地质意义[J]. 地质与资源, 2023, 32(6): 670-680. doi: 10.13686/j.cnki.dzyzy.2023.06.003
WANG Wen-dong, LIU Tao, ZHOU Chuan-fang, YANG Hua-ben, DU Bing-ying, LIU Yu-wei. IDENTIFICATION OF THE LATE TRIASSIC FUYUANGOU INTERMEDIATE-BASIC VOLCANIC ROCKS IN HEILONGJIANG PROVINCE: Geological Implication[J]. Geology and Resources, 2023, 32(6): 670-680. doi: 10.13686/j.cnki.dzyzy.2023.06.003
Citation: WANG Wen-dong, LIU Tao, ZHOU Chuan-fang, YANG Hua-ben, DU Bing-ying, LIU Yu-wei. IDENTIFICATION OF THE LATE TRIASSIC FUYUANGOU INTERMEDIATE-BASIC VOLCANIC ROCKS IN HEILONGJIANG PROVINCE: Geological Implication[J]. Geology and Resources, 2023, 32(6): 670-680. doi: 10.13686/j.cnki.dzyzy.2023.06.003

黑龙江富源沟晚三叠世中-基性火山岩的厘定及地质意义

  • 基金项目:
    中国地质调查局项目"内蒙古1:5万洛古河、兴华沟林场、阿凌河、1072.3高地幅区域地质矿产调查"(DD2016007803), "全国陆域及海区地质图件更新与共享"(DD20190370)
详细信息
    作者简介: 王文东(1985-), 男, 高级工程师, 主要从事区域地质研究工作, 通信地址黑龙江省哈尔滨市南岗区保健副路1号, E-mail//bedrock@yeah.Net
  • 中图分类号: P597

IDENTIFICATION OF THE LATE TRIASSIC FUYUANGOU INTERMEDIATE-BASIC VOLCANIC ROCKS IN HEILONGJIANG PROVINCE: Geological Implication

  • 黑龙江省西北部漠河市西部地区新厘定出非正式填图单元——富源沟中-基性火山岩, 其岩石组合为灰色、灰绿色玄武安山岩、辉石玄武岩、英安质火山碎屑岩等. 获得安山岩LA-ICP-MS锆石U-Pb测年的加权平均年龄为245±3 Ma, 其最小的岩浆锆石206Pb/238U谐和年龄为201±2 Ma, 另外获得火山口附近英安质火山角砾岩加权平均年龄为201±1 Ma, 其形成时代应为晚三叠世. 岩石地球化学特征显示, 富源沟中-基性火山岩为一套钙碱性系列岩石, 富集大离子亲石元素Ba、K、Sr等和轻稀土元素, 亏损高场强元素Nb、Ta、Ti、P等和重稀土元素, 具有弧岩浆岩地球化学特征. 该火山岩的厘定说明, 大兴安岭北部地区存在晚三叠世中-基性火山岩浆活动事件. 综合本区火山岩的特征并结合区域上研究成果, 认为其形成与蒙古-鄂霍次克大洋板片南向俯冲作用相关.

  • 加载中
  • 图 1  大兴安岭富源沟林场地区地质简图

    Figure 1. 

    图 2  富源沟林场地区安山岩和英安质火山角砾岩显微镜下照片

    Figure 2. 

    图 3  富源沟中-基性火山岩锆石阴极发光图像

    Figure 3. 

    图 4  富源沟中-基性火山岩锆石U-Pb谐和图

    Figure 4. 

    图 5  富源沟中-基性火山岩分类判别图

    Figure 5. 

    图 6  富源沟中-基性火山岩样品AFM图解(据文献[23])

    Figure 6. 

    图 7  富源沟中-基性火山岩样品SiO2-K2O图解(据文献[24])

    Figure 7. 

    图 8  富源沟中-基性火山岩原始地幔标准化稀土元素配分图和微量元素蛛网图

    Figure 8. 

    图 9  Nb/Yb-Th/Yb图解(据文献[38])

    Figure 9. 

    图 10  火山岩微量元素成分构造环境判别图

    Figure 10. 

  • [1]

    林强, 葛文春, 曹林, 等. 大兴安岭中生代双峰式火山岩的地球化学特征[J]. 地球化学, 2003, 32(3): 208-222. doi: 10.3321/j.issn:0379-1726.2003.03.002

    Lin Q, Ge W C, Cao L, et al. Geochemistry of Mesozoic volcanic rocks in Da Hinggan Ling: The bimodal volcanic rocks[J]. Geochimica, 2003, 32(3): 208-222. doi: 10.3321/j.issn:0379-1726.2003.03.002

    [2]

    许文良, 王枫, 裴福萍, 等. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 2013, 29(2): 339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302002.htm

    Xu W L, Wang F, Pei F P, et al. Mesozoic tectonic regimes and regional ore-forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations[J]. Acta Petrologica Sinica, 2013, 29(2): 339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302002.htm

    [3]

    张兴洲, 刘洋, 曾振, 等. 大兴安岭北部±130 Ma火山岩的地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201701001.htm

    Zhang X Z, Liu Y, Zeng Z, et al. The geological implications of±130 Ma volcanic rocks in the Northern Da Hinggan Mountains[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201701001.htm

    [4]

    王惠, 郭灵俊, 白翠霞, 等. 大兴安岭中北部晚侏罗世-早白垩世地层新认识[J]. 地质通报, 2005, 24(9): 867-871. doi: 10.3969/j.issn.1671-2552.2005.09.014

    Wang H, Guo L J, Bai C X, et al. New idea of Late Jurassic-Early Cretaceous strata in the north-central Da Hinggan Mountains, China[J]. Geological Bulletin of China, 2005, 24(9): 867-871. doi: 10.3969/j.issn.1671-2552.2005.09.014

    [5]

    刘世伟. 大兴安岭地区中生代火山岩岩石地层的划分与对比问题[J]. 地质与资源, 2009, 18(4): 241-244. doi: 10.3969/j.issn.1671-1947.2009.04.001

    Liu S W. Division and correlation of the Mesozoic volcanic rocks and strata in Daxinganling Region[J]. Geology and Resources, 2009, 18(4): 241-244. doi: 10.3969/j.issn.1671-1947.2009.04.001

    [6]

    周其林, 王献忠, 吉峰, 等. 大兴安岭中生代火山岩地层对比[J]. 地质论评, 2013, 59(6): 1077-1084. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201306009.htm

    Zhou Q L, Wang X Z, Ji F, et al. Corresponding relations of Mesozoic volcanic formations in the Da Hinggan Mountains[J]. Geological Review, 2013, 59(6): 1077-1084. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201306009.htm

    [7]

    尹志刚, 王文材, 张跃龙, 等. 伊勒呼里山中生代火山岩: 锆石U-Pb年代学及其对岩浆事件的制约[J]. 吉林大学学报(地球科学版), 2016, 46(3): 766-780. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201603013.htm

    Yin Z G, Wang W C, Zhang Y L, et al. Mesozoic volcanic rocks in Yilehuli area: Zircon U-Pb ages and their constraints on the magmatic events[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(3): 766-780. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201603013.htm

    [8]

    杜兵盈, 刘宇崴, 张铁安, 等. 黑龙江省西北部侏罗纪-早白垩世地层划分与对比[J]. 地层学杂志, 2019, 43(1): 28-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201901003.htm

    Du B Y, Liu Y W, Zhang T A, et al. Stratigraphic subdivision and correlation of the Jurassic-Early Cretaceous in northwestern Heilongjiang Province[J]. Journal of Stratigraphy, 2019, 43(1): 28-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201901003.htm

    [9]

    杨晓平, 江斌, 杨雅军. 大兴安岭早白垩世火山岩的时空分布特征[J]. 地球科学, 2019, 44(10): 3237-3251. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201910006.htm

    Yang X P, Jiang B, Yang Y J. Spatial-temporal distribution characteristics of Early Cretaceous volcanic rocks in Great Xing'an Range area[J]. Earth Science, 2019, 44(10): 3237-3251. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201910006.htm

    [10]

    杨雅军, 江斌, 王筱筝, 等. 黑龙江黑宝山-罕达气盆地早白垩世九峰山组年代地层划分[J]. 地质与资源, 2020, 29(5): 403-410. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10225.shtml

    Yang Y J, Jiang B, Wang X Z, et al. Chronostratigraphic division of the Early Cretaceous Jiufengshan Formation in Heibaoshan-Handaqi basin, Heilongjiang Province[J]. Geology and Resources, 2020, 29(5): 403-410. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10225.shtml

    [11]

    郑吉林, 王文东, 杨华本, 等. 大兴安岭北部下侏罗统战备村组的建立及其地质意义[J]. 地质通报, 2016, 35(7): 1106-1114. doi: 10.3969/j.issn.1671-2552.2016.07.006

    Zheng J L, Wang W D, Yang H B, et al. The establishment of the Lower Jurassic Zhanbeicun Formation in northern Da Hinggan Mountains and its geological significance[J]. Geological Bulletin of China, 2016, 35(7): 1106-1114. doi: 10.3969/j.issn.1671-2552.2016.07.006

    [12]

    李中会, 李睿杰, 李阳, 等. 大兴安岭满归地区变中酸性火山岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 中国地质调查, 2020, 7(1): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC202001007.htm

    Li Z H, Li R J, Li Y, et al. LA-ICP-MS zircon U-Pb ages and geological significance of the meta-intermediate-acidic volcanic rocks in Mangui area of Da Hinggan Mountains[J]. Geological Survey of China, 2020, 7(1): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC202001007.htm

    [13]

    李宇. 兴安地块中生代火成岩的年代学与地球化学: 对蒙古-鄂霍茨克构造体系演化的制约[D]. 长春: 吉林大学, 2018.

    Li Y. Geochronology and geochemistry of the Mesozoic igneous rocks in the Xing'an massif, NE China: Constraints on the evolution of the Mongol-Okhotsk tectonic regime[D]. Changchun: Jilin University, 2018.

    [14]

    唐杰. 额尔古纳地块中生代火成岩的年代学与地球化学: 对蒙古-鄂霍茨克缝合带构造演化的制约[D]. 长春: 吉林大学, 2016.

    Tang J. Geochronology and geochemistry of the Mesozoic igneous rocks in the Erguna massif, NE China: Constraints on the tectonic evolution of the Mongol-Okhotsk suture zone[D]. Changchun: Jilin University, 2016.

    [15]

    孙晨阳, 唐杰, 许文良, 等. 造山带内微陆块地壳的增生与再造过程: 以额尔古纳地块为例[J]. 中国科学: 地球科学, 2017, 47(7): 804-817. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201707004.htm

    Sun C Y, Tang J, Xu W L, et al. Crustal accretion and reworking processes of micro-continental massifs within orogenic belt: A case study of the Erguna massif, NE China[J]. Science China Earth Sciences, 2017, 60(7): 1256-1267. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201707004.htm

    [16]

    李怀坤, 耿建珍, 郝爽, 等. 用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究[J]. 矿物学报, 2009, 29(S1): 600-601. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2009S1311.htm

    Li H K, Geng J Z, Hao S, et al. The study of zircon U-Pb dating by means of LA-MC-ICPMS[J]. Acta Mineralogica Sinica, 2009, 29(S1): 600-601. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2009S1311.htm

    [17]

    Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.

    [18]

    Belousova E, Griffin W, O'Reilly S Y, et al. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622. doi: 10.1007/s00410-002-0364-7

    [19]

    Liang Q, Jing H, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry[J]. Talanta, 2000, 51(3): 507-513. doi: 10.1016/S0039-9140(99)00318-5

    [20]

    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    [21]

    Le Maitre R W, Bateman P D, Keller A, et al. A classification of igneous rocks and glossary of terms: Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks[M]. Oxford: Blackwell, 1989.

    [22]

    Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20(4): 325-343.

    [23]

    Irvine T N, Barager W R A. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences 1971, 8(5): 523-548. doi: 10.1139/e71-055

    [24]

    Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamouu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81. doi: 10.1007/BF00384745

    [25]

    Wilson W. Igneous petrogenesis[M]. Dordrecht: Springer, 1989: 327-373.

    [26]

    纪政, 葛文春, 杨浩, 等. 大兴安岭中段晚三叠世安第斯型安山岩: 蒙古-鄂霍茨克大洋板片南向俯冲作用的产物[J]. 岩石学报, 2018, 34(10): 2917-2930. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201810007.htm

    Ji Z, Ge W C, Yang H, et al. The Late Triassic Andean-type andesite from the central Great Xing'an Range: Products of the southward subduction of the Mongol-Okhotsk oceanic plate[J]. Acta Petrologica Sinica, 2018, 34(10): 2917-2930. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201810007.htm

    [27]

    于跃江, 赵忠海, 杨欣欣, 等. 大兴安岭北段漠河前陆盆地早侏罗世火山岩时代的厘定[J]. 中国地质, 2021, 48(2): 580-592. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102017.htm

    Yu Y J, Zhao Z H, Yang X X, et al. Dating of Early Jurassic volcanic rocks in the Mohe foreland basin of northern Greater Khingan Mountains, Northeast China[J]. Geology in China, 2021, 48(2): 580-592. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102017.htm

    [28]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 1989, 42: 313-345.

    [29]

    Hess P C. Phase equilibria constraints on the origin of ocean floor basalts[C]//Morgan J P, Blackman D K, Sinton J M. Mantle flow and melt generation at mid-ocean ridges. Washington: American Geophysical Union, 1992: 67-102.

    [30]

    Hofmann A W, Jochum K P, Seufert M, et al. Nb and Pb in oceanic basalts: New constraints on mantle evolution[J]. Earth and Planetary Science Letters, 1986, 79(1/2): 33-45.

    [31]

    许文良, 孙晨阳, 唐杰, 等. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 2019, 44(5): 1620-1646. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201905017.htm

    Xu W L, Sun C Y, Tang J, et al. Basement nature and tectonic evolution of the Xing'an-Mongolian Orogenic Belt[J]. Earth Science, 2019, 44(5): 1620-1646. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201905017.htm

    [32]

    马永非, 刘永江, 温泉波, 等. 大兴安岭中段晚三叠世哈达陶勒盖组火山岩成因及构造背景[J]. 地球科学, 2017, 42(12): 2146-2173. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201712005.htm

    Ma Y F, Liu Y J, Wen Q B, et al. Petrogenesis and tectonic settings of volcanic rocks from Late Triassic Hadataolegai Fm. at central part of Great Xing'an Range[J]. Earth Science, 2017, 42(12): 2146-2173. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201712005.htm

    [33]

    司秋亮, 王恩德, 唐振, 等. 大兴安岭中段哈达陶勒盖组火山岩U-Pb定年及成因[J]. 东北大学学报(自然科学版), 2018, 39(12): 1779-1782. doi: 10.12068/j.issn.1005-3026.2018.12.021

    Si Q L, Wang E D, Tang Z, et al. Zircon U-Pb dating and petrogenesis of volcanic rocks in Hadataolegai Formation, middle Great Xing'an Range[J]. Journal of Northeastern University (Natural Science), 2018, 39(12): 1779-1782. doi: 10.12068/j.issn.1005-3026.2018.12.021

    [34]

    江思宏, 张莉莉, 刘翼飞, 等. 兴蒙造山带成矿规律及若干科学问题[J]. 矿床地质, 2018, 37(4): 671-711. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201804001.htm

    Jiang S H, Zhang L L, Liu Y F, et al. Metallogeny of Xing-Meng Orogenic Belt and some related problems[J]. Mineral Deposits, 2018, 37(4): 671-711. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201804001.htm

    [35]

    唐杰, 许文良, 王枫. 东北亚早中生代火成岩组合的时空变异: 对古太平洋板块俯冲开始时间的制约[J]. 矿物岩石地球化学通报, 2016, 35(6): 1181-1194. doi: 10.3969/j.issn.1007-2802.2016.06.009

    Tang J, Xu W L, Wang F. Rock associations and their spatial-temporal variations of the Early Mesozoic igneous rocks in the NE Asia: Constraints on the initial subduction timing of the Paleo-Pacific Plate[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(6): 1181-1194. doi: 10.3969/j.issn.1007-2802.2016.06.009

    [36]

    李世超, 张凌宇, 李鹏川, 等. 大兴安岭中段早三叠世O型埃达克岩的发现及其大地构造意义[J]. 地球科学, 2017, 42(12): 2117-2128. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201712002.htm

    Li S C, Zhang L Y, Li P C, et al. Discovery and tectonic implications of Early Triassic O-type adakite in middle of Great Xing'an Range[J]. Earth Science, 2017, 42(12): 2117-2128. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201712002.htm

    [37]

    申亮, 赵胜金, 于海洋, 等. 大兴安岭哈达陶勒盖组火山岩年龄、地球化学特征及其陆缘弧构造背景[J]. 中国地质, 2020, 47(4): 1041-1055. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202004011.htm

    Shen L, Zhao S J, Yu H Y, et al. Zircon age and geochemical characteristics of Hadataolegai Formation volcanic rocks in Da Hinggan Mountains and its continental marginal arc setting[J]. Geology in China, 2020, 47(4): 1041-1055. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202004011.htm

    [38]

    Pearce J A, Peate D W. Tectonic implications of the composition of volcanic arc magmas[J]. Annual Review of Earth & Planetary Sciences, 1995, 23(1): 251-285.

    [39]

    Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J]. Earth and Planetary Science Letters, 1980, 50(1): 11-30. doi: 10.1016/0012-821X(80)90116-8

    [40]

    Pearce J A. The role of sub-continental lithosphere in magma genesis at destructive plate margins[C]//Zartman R E. Continental basalts and mantle xenoliths. Chester: Nantwich Shiva Academic Press, 1983: 230-249.

  • 加载中

(10)

计量
  • 文章访问数:  1017
  • PDF下载数:  140
  • 施引文献:  0
出版历程
收稿日期:  2021-07-26
修回日期:  2021-09-29
刊出日期:  2023-12-25

目录