IDENTIFICATION OF THE LATE TRIASSIC FUYUANGOU INTERMEDIATE-BASIC VOLCANIC ROCKS IN HEILONGJIANG PROVINCE: Geological Implication
-
摘要:
黑龙江省西北部漠河市西部地区新厘定出非正式填图单元——富源沟中-基性火山岩, 其岩石组合为灰色、灰绿色玄武安山岩、辉石玄武岩、英安质火山碎屑岩等. 获得安山岩LA-ICP-MS锆石U-Pb测年的加权平均年龄为245±3 Ma, 其最小的岩浆锆石206Pb/238U谐和年龄为201±2 Ma, 另外获得火山口附近英安质火山角砾岩加权平均年龄为201±1 Ma, 其形成时代应为晚三叠世. 岩石地球化学特征显示, 富源沟中-基性火山岩为一套钙碱性系列岩石, 富集大离子亲石元素Ba、K、Sr等和轻稀土元素, 亏损高场强元素Nb、Ta、Ti、P等和重稀土元素, 具有弧岩浆岩地球化学特征. 该火山岩的厘定说明, 大兴安岭北部地区存在晚三叠世中-基性火山岩浆活动事件. 综合本区火山岩的特征并结合区域上研究成果, 认为其形成与蒙古-鄂霍次克大洋板片南向俯冲作用相关.
Abstract:The Fuyuangou intermediate-basic volcanic rocks, composed of gray-grayish green basalt andesite, pyroxene basalt and dacite pyroclastic rocks, is a newly identified informal mapping unit in the western Mohe City of northwest Heilongjiang Province. The LA-ICP-MS zircon U-Pb dating results yield the weighted mean age of andesite of 245±3 Ma, and the minimum 206Pb/238U concordia age of magmatic zircon is 201±2 Ma. Besides, the weighted mean age of dacitic volcanic breccia near the crater is 201±1 Ma, indicating that it was formed in Late Triassic. The lithogeochemical characteristics show that the Fuyuangou intermediate-basic volcanic rocks, belonging to calc-alkaline series, are enriched in LILEs(Ba, K and Sr) and LREEs, and depleted in HFSEs(Nb, Ta, Ti and P) and HREEs, with the geochemical features of arc magmatic rocks. The determination of the volcanic rocks suggests an intermediate-basic volcanic magmatic activity event in Late Triassic in the northern Daxinganling Mountains. Combined the characteristics of the volcanic rocks in the area with regional research results, it is considered that the formation of the volcanic rocks is related to the southward subduction of Mongol-Okhotsk oceanic slab.
-
-
图 6 富源沟中-基性火山岩样品AFM图解(据文献[23])
Figure 6.
图 7 富源沟中-基性火山岩样品SiO2-K2O图解(据文献[24])
Figure 7.
图 9 Nb/Yb-Th/Yb图解(据文献[38])
Figure 9.
-
[1] 林强, 葛文春, 曹林, 等. 大兴安岭中生代双峰式火山岩的地球化学特征[J]. 地球化学, 2003, 32(3): 208-222. doi: 10.3321/j.issn:0379-1726.2003.03.002
Lin Q, Ge W C, Cao L, et al. Geochemistry of Mesozoic volcanic rocks in Da Hinggan Ling: The bimodal volcanic rocks[J]. Geochimica, 2003, 32(3): 208-222. doi: 10.3321/j.issn:0379-1726.2003.03.002
[2] 许文良, 王枫, 裴福萍, 等. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 2013, 29(2): 339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302002.htm
Xu W L, Wang F, Pei F P, et al. Mesozoic tectonic regimes and regional ore-forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations[J]. Acta Petrologica Sinica, 2013, 29(2): 339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302002.htm
[3] 张兴洲, 刘洋, 曾振, 等. 大兴安岭北部±130 Ma火山岩的地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201701001.htm
Zhang X Z, Liu Y, Zeng Z, et al. The geological implications of±130 Ma volcanic rocks in the Northern Da Hinggan Mountains[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201701001.htm
[4] 王惠, 郭灵俊, 白翠霞, 等. 大兴安岭中北部晚侏罗世-早白垩世地层新认识[J]. 地质通报, 2005, 24(9): 867-871. doi: 10.3969/j.issn.1671-2552.2005.09.014
Wang H, Guo L J, Bai C X, et al. New idea of Late Jurassic-Early Cretaceous strata in the north-central Da Hinggan Mountains, China[J]. Geological Bulletin of China, 2005, 24(9): 867-871. doi: 10.3969/j.issn.1671-2552.2005.09.014
[5] 刘世伟. 大兴安岭地区中生代火山岩岩石地层的划分与对比问题[J]. 地质与资源, 2009, 18(4): 241-244. doi: 10.3969/j.issn.1671-1947.2009.04.001
Liu S W. Division and correlation of the Mesozoic volcanic rocks and strata in Daxinganling Region[J]. Geology and Resources, 2009, 18(4): 241-244. doi: 10.3969/j.issn.1671-1947.2009.04.001
[6] 周其林, 王献忠, 吉峰, 等. 大兴安岭中生代火山岩地层对比[J]. 地质论评, 2013, 59(6): 1077-1084. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201306009.htm
Zhou Q L, Wang X Z, Ji F, et al. Corresponding relations of Mesozoic volcanic formations in the Da Hinggan Mountains[J]. Geological Review, 2013, 59(6): 1077-1084. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201306009.htm
[7] 尹志刚, 王文材, 张跃龙, 等. 伊勒呼里山中生代火山岩: 锆石U-Pb年代学及其对岩浆事件的制约[J]. 吉林大学学报(地球科学版), 2016, 46(3): 766-780. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201603013.htm
Yin Z G, Wang W C, Zhang Y L, et al. Mesozoic volcanic rocks in Yilehuli area: Zircon U-Pb ages and their constraints on the magmatic events[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(3): 766-780. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201603013.htm
[8] 杜兵盈, 刘宇崴, 张铁安, 等. 黑龙江省西北部侏罗纪-早白垩世地层划分与对比[J]. 地层学杂志, 2019, 43(1): 28-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201901003.htm
Du B Y, Liu Y W, Zhang T A, et al. Stratigraphic subdivision and correlation of the Jurassic-Early Cretaceous in northwestern Heilongjiang Province[J]. Journal of Stratigraphy, 2019, 43(1): 28-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201901003.htm
[9] 杨晓平, 江斌, 杨雅军. 大兴安岭早白垩世火山岩的时空分布特征[J]. 地球科学, 2019, 44(10): 3237-3251. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201910006.htm
Yang X P, Jiang B, Yang Y J. Spatial-temporal distribution characteristics of Early Cretaceous volcanic rocks in Great Xing'an Range area[J]. Earth Science, 2019, 44(10): 3237-3251. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201910006.htm
[10] 杨雅军, 江斌, 王筱筝, 等. 黑龙江黑宝山-罕达气盆地早白垩世九峰山组年代地层划分[J]. 地质与资源, 2020, 29(5): 403-410. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10225.shtml
Yang Y J, Jiang B, Wang X Z, et al. Chronostratigraphic division of the Early Cretaceous Jiufengshan Formation in Heibaoshan-Handaqi basin, Heilongjiang Province[J]. Geology and Resources, 2020, 29(5): 403-410. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10225.shtml
[11] 郑吉林, 王文东, 杨华本, 等. 大兴安岭北部下侏罗统战备村组的建立及其地质意义[J]. 地质通报, 2016, 35(7): 1106-1114. doi: 10.3969/j.issn.1671-2552.2016.07.006
Zheng J L, Wang W D, Yang H B, et al. The establishment of the Lower Jurassic Zhanbeicun Formation in northern Da Hinggan Mountains and its geological significance[J]. Geological Bulletin of China, 2016, 35(7): 1106-1114. doi: 10.3969/j.issn.1671-2552.2016.07.006
[12] 李中会, 李睿杰, 李阳, 等. 大兴安岭满归地区变中酸性火山岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 中国地质调查, 2020, 7(1): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC202001007.htm
Li Z H, Li R J, Li Y, et al. LA-ICP-MS zircon U-Pb ages and geological significance of the meta-intermediate-acidic volcanic rocks in Mangui area of Da Hinggan Mountains[J]. Geological Survey of China, 2020, 7(1): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC202001007.htm
[13] 李宇. 兴安地块中生代火成岩的年代学与地球化学: 对蒙古-鄂霍茨克构造体系演化的制约[D]. 长春: 吉林大学, 2018.
Li Y. Geochronology and geochemistry of the Mesozoic igneous rocks in the Xing'an massif, NE China: Constraints on the evolution of the Mongol-Okhotsk tectonic regime[D]. Changchun: Jilin University, 2018.
[14] 唐杰. 额尔古纳地块中生代火成岩的年代学与地球化学: 对蒙古-鄂霍茨克缝合带构造演化的制约[D]. 长春: 吉林大学, 2016.
Tang J. Geochronology and geochemistry of the Mesozoic igneous rocks in the Erguna massif, NE China: Constraints on the tectonic evolution of the Mongol-Okhotsk suture zone[D]. Changchun: Jilin University, 2016.
[15] 孙晨阳, 唐杰, 许文良, 等. 造山带内微陆块地壳的增生与再造过程: 以额尔古纳地块为例[J]. 中国科学: 地球科学, 2017, 47(7): 804-817. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201707004.htm
Sun C Y, Tang J, Xu W L, et al. Crustal accretion and reworking processes of micro-continental massifs within orogenic belt: A case study of the Erguna massif, NE China[J]. Science China Earth Sciences, 2017, 60(7): 1256-1267. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201707004.htm
[16] 李怀坤, 耿建珍, 郝爽, 等. 用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究[J]. 矿物学报, 2009, 29(S1): 600-601. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2009S1311.htm
Li H K, Geng J Z, Hao S, et al. The study of zircon U-Pb dating by means of LA-MC-ICPMS[J]. Acta Mineralogica Sinica, 2009, 29(S1): 600-601. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2009S1311.htm
[17] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
[18] Belousova E, Griffin W, O'Reilly S Y, et al. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622. doi: 10.1007/s00410-002-0364-7
[19] Liang Q, Jing H, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry[J]. Talanta, 2000, 51(3): 507-513. doi: 10.1016/S0039-9140(99)00318-5
[20] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956
[21] Le Maitre R W, Bateman P D, Keller A, et al. A classification of igneous rocks and glossary of terms: Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks[M]. Oxford: Blackwell, 1989.
[22] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20(4): 325-343.
[23] Irvine T N, Barager W R A. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences 1971, 8(5): 523-548. doi: 10.1139/e71-055
[24] Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamouu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81. doi: 10.1007/BF00384745
[25] Wilson W. Igneous petrogenesis[M]. Dordrecht: Springer, 1989: 327-373.
[26] 纪政, 葛文春, 杨浩, 等. 大兴安岭中段晚三叠世安第斯型安山岩: 蒙古-鄂霍茨克大洋板片南向俯冲作用的产物[J]. 岩石学报, 2018, 34(10): 2917-2930. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201810007.htm
Ji Z, Ge W C, Yang H, et al. The Late Triassic Andean-type andesite from the central Great Xing'an Range: Products of the southward subduction of the Mongol-Okhotsk oceanic plate[J]. Acta Petrologica Sinica, 2018, 34(10): 2917-2930. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201810007.htm
[27] 于跃江, 赵忠海, 杨欣欣, 等. 大兴安岭北段漠河前陆盆地早侏罗世火山岩时代的厘定[J]. 中国地质, 2021, 48(2): 580-592. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102017.htm
Yu Y J, Zhao Z H, Yang X X, et al. Dating of Early Jurassic volcanic rocks in the Mohe foreland basin of northern Greater Khingan Mountains, Northeast China[J]. Geology in China, 2021, 48(2): 580-592. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102017.htm
[28] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 1989, 42: 313-345.
[29] Hess P C. Phase equilibria constraints on the origin of ocean floor basalts[C]//Morgan J P, Blackman D K, Sinton J M. Mantle flow and melt generation at mid-ocean ridges. Washington: American Geophysical Union, 1992: 67-102.
[30] Hofmann A W, Jochum K P, Seufert M, et al. Nb and Pb in oceanic basalts: New constraints on mantle evolution[J]. Earth and Planetary Science Letters, 1986, 79(1/2): 33-45.
[31] 许文良, 孙晨阳, 唐杰, 等. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 2019, 44(5): 1620-1646. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201905017.htm
Xu W L, Sun C Y, Tang J, et al. Basement nature and tectonic evolution of the Xing'an-Mongolian Orogenic Belt[J]. Earth Science, 2019, 44(5): 1620-1646. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201905017.htm
[32] 马永非, 刘永江, 温泉波, 等. 大兴安岭中段晚三叠世哈达陶勒盖组火山岩成因及构造背景[J]. 地球科学, 2017, 42(12): 2146-2173. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201712005.htm
Ma Y F, Liu Y J, Wen Q B, et al. Petrogenesis and tectonic settings of volcanic rocks from Late Triassic Hadataolegai Fm. at central part of Great Xing'an Range[J]. Earth Science, 2017, 42(12): 2146-2173. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201712005.htm
[33] 司秋亮, 王恩德, 唐振, 等. 大兴安岭中段哈达陶勒盖组火山岩U-Pb定年及成因[J]. 东北大学学报(自然科学版), 2018, 39(12): 1779-1782. doi: 10.12068/j.issn.1005-3026.2018.12.021
Si Q L, Wang E D, Tang Z, et al. Zircon U-Pb dating and petrogenesis of volcanic rocks in Hadataolegai Formation, middle Great Xing'an Range[J]. Journal of Northeastern University (Natural Science), 2018, 39(12): 1779-1782. doi: 10.12068/j.issn.1005-3026.2018.12.021
[34] 江思宏, 张莉莉, 刘翼飞, 等. 兴蒙造山带成矿规律及若干科学问题[J]. 矿床地质, 2018, 37(4): 671-711. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201804001.htm
Jiang S H, Zhang L L, Liu Y F, et al. Metallogeny of Xing-Meng Orogenic Belt and some related problems[J]. Mineral Deposits, 2018, 37(4): 671-711. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201804001.htm
[35] 唐杰, 许文良, 王枫. 东北亚早中生代火成岩组合的时空变异: 对古太平洋板块俯冲开始时间的制约[J]. 矿物岩石地球化学通报, 2016, 35(6): 1181-1194. doi: 10.3969/j.issn.1007-2802.2016.06.009
Tang J, Xu W L, Wang F. Rock associations and their spatial-temporal variations of the Early Mesozoic igneous rocks in the NE Asia: Constraints on the initial subduction timing of the Paleo-Pacific Plate[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(6): 1181-1194. doi: 10.3969/j.issn.1007-2802.2016.06.009
[36] 李世超, 张凌宇, 李鹏川, 等. 大兴安岭中段早三叠世O型埃达克岩的发现及其大地构造意义[J]. 地球科学, 2017, 42(12): 2117-2128. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201712002.htm
Li S C, Zhang L Y, Li P C, et al. Discovery and tectonic implications of Early Triassic O-type adakite in middle of Great Xing'an Range[J]. Earth Science, 2017, 42(12): 2117-2128. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201712002.htm
[37] 申亮, 赵胜金, 于海洋, 等. 大兴安岭哈达陶勒盖组火山岩年龄、地球化学特征及其陆缘弧构造背景[J]. 中国地质, 2020, 47(4): 1041-1055. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202004011.htm
Shen L, Zhao S J, Yu H Y, et al. Zircon age and geochemical characteristics of Hadataolegai Formation volcanic rocks in Da Hinggan Mountains and its continental marginal arc setting[J]. Geology in China, 2020, 47(4): 1041-1055. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202004011.htm
[38] Pearce J A, Peate D W. Tectonic implications of the composition of volcanic arc magmas[J]. Annual Review of Earth & Planetary Sciences, 1995, 23(1): 251-285.
[39] Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J]. Earth and Planetary Science Letters, 1980, 50(1): 11-30. doi: 10.1016/0012-821X(80)90116-8
[40] Pearce J A. The role of sub-continental lithosphere in magma genesis at destructive plate margins[C]//Zartman R E. Continental basalts and mantle xenoliths. Chester: Nantwich Shiva Academic Press, 1983: 230-249.
-