-
摘要:
采用层次分析法对科尔沁沙地西北缘地质环境、生态环境、社会环境进行分析, 构建一套以适应农牧业发展为目标层的评价指标体系, 并计算区域生态地质环境质量的综合指数, 对生态地质环境状况进行评价. 通过对评价结果统计认为: 生态环境较比地质环境、社会环境对整个评价结果的影响更大, 其中土地质量是最主要因素; 研究区所有的评价单元中有86%处于中等及偏下的水平. 该研究结果对正确认识研究区生态地质环境具有重要的意义.
Abstract:In this study, the geological, ecological and social environment of the northwest margin of Horqin sandy land are analyzed by analytic hierarchy process (AHP). An evaluation index system is established to adapt to the development of agriculture and animal husbandry as target layer, and the comprehensive indexes of regional eco-geological environment quality are calculated to evaluate the eco-geological environment. According to the results, it is considered that the eco-environment impacts on the whole evaluation results more than the geological and social environment does, with land quality as the key factor. Of all the evaluation units in the study area, 86% are at a medium or lower level. The results are of great significance to correctly understand the eco-geological environment of the area.
-
Key words:
- analytic hierarchy process /
- eco-geology /
- environment evaluation /
- GIS /
- Horqin sandy land /
- Inner Mongolia
-
-
表 1 生态地质环境评价指标体系一览表
Table 1. Value and grading of eco-geological environment evaluation inde
目标层(A) 准则层(B) 指标层(C) 分级标准及阈值(P) 良好(4) 较好(3) 中等(2) 较差(1) 科尔沁沙地西北缘生态地质环境评价 地质环境B1 高程C1/m 255~400 400~475 475~635 635~739 坡度C2/(°) 0~5 5~10 10~15 15~25 坡向C3 阴坡 半阴坡 半阳坡 阳坡 断裂带线密度C4/km-1 1.83~2.44 1.21~1.83 0.61~1.21 0~0.61 岩石风化程度C5 全风化 强风化 中风化 弱风化 生态环境B2 水网密度C6/km-1 1.97~2.63 1.31~1.97 0.66~1.31 0~0.66 土壤有机质含量C7/10-3 >30 20~30 10~20 <10 土地利用类型C8 耕地 林地 草地 砂地 社会环境B3 人口密度C9/(人/km2) <100 100~200 200~500 >500 资源开发程度C10 未开发 轻度开发 中度开发 重度开发 交通通达性C11/km-1 1.31~1.75 0.87~1.31 0.44~0.87 0~0.44 表 2 判断矩阵
Table 2. Judgment matrix
A B1 B2 … Bn B1 b11 b12 … b1n B2 b21 b22 … b2n … … … … … Bn bn1 bn2 … bnn 表 3 标度及含义
Table 3. Scale and representation
标度值 含义 1 两个因素相比,具有相同的重要性 3 两个因素相比,一个因素比另一个因素稍微重要 5 两个因素相比,一个因素比另一个因素明显重要 7 两个因素相比,一个因素比另一个因素强烈重要 9 两个因素相比,一个因素比另一个因素极端重要 2/4/6/8 分别为上述相邻判断的中值 倒数 一个因素比另一个因素不重要程度的描述 表 4 随机一致性指标
Table 4. Random consistency index
n 1 2 3 4 5 6 7 8 9 10 RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 表 5 准则层B相对于目标层A的判断矩阵及权重
Table 5. Judgment matrix and weight of criterion layer (B) to target layer (A)
A B1 B2 B3 权重 B1 1.00 0.25 0.50 0.14 B2 4.00 1.00 3.00 0.63 B3 2.00 0.33 1.00 0.23 注:λmax=3.018. 表 6 指标层C对准则层B1的判断矩阵及权重
Table 6. Judgment matrix and weight of index layer (C) to criterion layer (B1)
B1 C1 C2 C3 C4 C5 权重 C1 1.00 3.00 0.20 7.00 0.50 0.16 C2 0.33 1.00 0.20 3.00 0.20 0.07 C3 5.00 5.00 1.00 7.00 3.00 0.49 C4 0.14 0.33 0.14 1.00 0.25 0.04 C5 2.00 5.00 0.33 4.00 1.00 0.23 注:一致性比例0.0850,λmax=5.3808. 表 7 指标层C对准则层B2的判断矩阵及权重
Table 7. Judgment matrix and weight of index layer (C) to criterion layer (B2)
B2 C6 C7 C8 权重 C6 1.00 0.25 0.33 0.12 C7 4.00 1.00 2.00 0.56 C8 3.00 0.50 1.00 0.32 注:一致性比例0.0176,λmax=3.0183. 表 8 指标层C对准则层B3的判断矩阵及权重
Table 8. Judgment matrix and weight of index layer (C) to criterion layer (B3)
B3 C9 C10 C11 权重 C9 1.00 3.00 0.33 0.27 C10 0.33 1.00 0.25 0.12 C11 3.00 4.00 1.00 0.61 注:一致性比例0.0707,λmax=3.0735. 表 9 指标层C对目标层A的综合权重
Table 9. Comprehensive weight of index layer (C) to target layer (A)
A 综合权重 位数 C1 0.0223 9 C10 0.1465 3 C11 0.028 8 C2 0.01 10 C3 0.0672 5 C4 0.0055 11 C5 0.0316 7 C6 0.0762 4 C7 0.349 1 C8 0.1998 2 C9 0.064 6 表 10 生态地质环境质量划分标准
Table 10. Classification criterion of eco-geological environment quality
生态地质环境等级 Ⅰ(好) Ⅱ(较好) Ⅲ(中) Ⅳ(较差) Ⅴ(差) 生态地质环境质量指数(M) >10 9~10 8~9 7~8 <7 -
[1] 陈梦熊. 论生态地质环境系统与综合性生态环境地质调查[J]. 水文地质工程地质, 1999(3): 5-8, 14. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG903.001.htm
Chen M X. Discussions on the eco-geological environment systems and the eco-environgeological survey[J]. Hydrogeology & Engineering Geology, 1999(3): 5-8, 14. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG903.001.htm
[2] 黄润秋. 生态环境地质的基本特点与技术支撑[J]. 中国地质, 2001, 28(11): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200111004.htm
Huang R Q. Basic characteristics and technical support of the eco- environmental geology[J]. Geology in China, 2001, 28(11): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200111004.htm
[3] 陈朝亮, 林玲, 李强, 等. 内江市生态地质环境质量综合评价[J]. 西南科技大学学报, 2019, 34(1): 20-25. doi: 10.3969/j.issn.1671-8755.2019.01.004
Chen C L, Lin L, Li Q, et al. Comprehensive evaluation of ecological geological environment quality in Neijiang City[J]. Journal of Southwest University of Science and Technology, 2019, 34(1): 20-25. doi: 10.3969/j.issn.1671-8755.2019.01.004
[4] 周爱国, 周建伟, 梁合诚, 等. 地质环境评价[M]. 武汉: 中国地质大学出版社, 2008: 136-139.
Zhou A G, Zhou J W, Liang H C, et al. Assessment on geological environment[M]. Wuhan: China University of Geosciences Press, 2008: 136-139. (in Chinese)
[5] 田辉, 金洪涛, 孙岐发, 等. 基于层次分析法的盘锦湿地生态评价[J]. 地质与资源, 2018, 27(3): 268-271, 287. doi: 10.3969/j.issn.1671-1947.2018.03.009
Tian H, Jin H T, Sun Q F, et al. Ecological evaluation on Panjin wetland based on analytic hierarchy process[J]. Geology and Resources, 2018, 27(3): 268-271, 287. doi: 10.3969/j.issn.1671-1947.2018.03.009
[6] 郑长远, 张启兴, 贾君, 等. 层次分析法在长江源区生态地质环境质量(脆弱性)评价中的应用[J]. 西北地质, 2010, 43(1): 137-145. doi: 10.3969/j.issn.1009-6248.2010.01.015
Zheng C Y, Zhang Q X, Jia J, et al. The application of analytic hierarchy process (AHP) in source region of the Yangtze River's geological environment quality (vulnerabilities) evaluation[J]. Northwestern Geology, 2010, 43(1): 137-145. doi: 10.3969/j.issn.1009-6248.2010.01.015
[7] 李崧, 邱微, 赵庆良, 等. 层次分析法应用于黑龙江省生态环境质量评价研究[J]. 环境科学, 2006, 27(5): 1031-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200605038.htm
Li S, Qiu W, Zhao Q L, et al. Applying analytical hierarchy process to assess eco-environment quality of Heilongjiang Province[J]. Environmental Science, 2006, 27(5): 1031-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200605038.htm
[8] 李明. 盐边县桐子林镇生态地质环境质量评价[D]. 成都: 成都理工大学, 2018: 28-32.
Li M. Evaluation on ecological geological environment quality of Tongzilin Town in Yanbian County[D]. Chengdu: Chengdu University of Technology, 2018: 28-32.
[9] 杨澍, 初禹, 杨湘奎, 等. 层次分析法(AHP)在三江平原地质环境质量评价中的应用[J]. 地质通报, 2005, 24(5): 485-490. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200505016.htm
Yang S, Chu Y, Yang X K, et al. Application of the analytic hierarchy process (AHP) in the evaluation of the geo-environmental quality in the Sanjiang Plain[J]. Geological Bulletin of China, 2005, 24(5) 485-490. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200505016.htm
[10] 梁帅, 戴慧敏, 刘国栋, 等. 黑龙江双阳河流域土壤-作物-人体系统中硒元素及生态环境与人体健康评价[J]. 中国地质, 2022, 49(4): 1064-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202204003.htm
Liang S, Dai H M, Liu G D, et al. Geochemical characteristics and evaluation of ecological environment and human health of selenium in soil-crop-human system in Shuangyang River Basin, Heilongjiang[J]. Geology in China, 2022, 49(4): 1064-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202204003.htm
[11] 陈树旺, 邢德和, 丁秋红, 等. 生态地质调查评价——以辽宁铁岭地区为例[J]. 地质与资源, 2012, 21(6): 540-545. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9102.shtml
Chen S W, Xing D H, Ding Q H, et al. Ecogeological survey and evaluation: A case study of Tieling area, Liaoning Province[J]. Geology and Resources, 2012, 21(6): 540-545. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9102.shtml
[12] 李霄, 柴璐, 王晓光, 等. 基于层次分析法的丹东地区地下水污染防治区划[J]. 地质与资源, 2018, 27(4): 396-405. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8484.shtml
Li X, Chai L, Wang X G, et al. Regionalization of groundwater pollution prevention in Dandong area based on analytic hierarchy process[J]. Geology and Resources, 2018, 27(4): 396-405. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8484.shtml
[13] 黄润秋, 向喜琼. GIS技术在生态环境地质评价中的应用[J]. 地质通报, 2002, 21(2): 98-101. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200202010.htm
Huang R Q, Xiang X Q. Application of the GIS technique in the assessment of the eco-environment[J]. Geological Bulletin of China, 2002, 21(2): 98-101. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200202010.htm
[14] 王克晓, 陈刚, 陈伟涛, 等. 生态地质环境评价方法研究[J]. 测绘科学, 2015, 40(7): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201507017.htm
Wang K X, Chen G, Chen W T, et al. Comprehensive assessment of eco-geological environment[J]. Science of Surveying and Mapping, 2015, 40(7): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201507017.htm
[15] 孙张涛, 余正伟, 舒思齐, 等. 中国省域生态系统服务价值评价与生态地质调查工作建议[J]. 中国地质, 2023, 50(2): 479-494. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202302011.htm
Sun Z T, Yu Z W, Shu S Q, et al. Evaluation of ecosystem services of Chinese provincial land and suggestions for ecological geological survey[J]. Geology in China, 2023, 50(2): 479-494. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202302011.htm
[16] 孟晖, 李春燕, 张若琳, 等. 全国地质环境承载能力评价[J]. 地质通报, 2021, 40(4): 451-459. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202104001.htm
Meng H, Li C Y, Zhang R L, et al. Assessment of carrying capacity of national geological environments in China[J]. Geological Bulletin of China, 2021, 40(4): 451-459. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202104001.htm
[17] 魏路, 刘建奎, 肖永红, 等. 安徽省地质环境承载能力评价[J]. 地质通报, 2020, 39(1): 102-107. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202001013.htm
Wei L, Liu J K, Xiao Y H, et al. The evaluation on the bearing capacity of geological environment in Anhui Province[J]. Geological Bulletin of China, 2020, 39(1): 102-107. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202001013.htm
[18] 高玄彧. 地貌基本形态的主客分类法[J]. 山地学报, 2004, 22(3): 261-266. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200403001.htm
Gao X Y. The subjective and objective classification of geomorphologic forms[J]. Journal of Mountain Science, 2004, 22(3): 261-266. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200403001.htm
[19] 张君, 蔡德宝, 杨树琼, 等. 丹江口库区不同坡度对土壤肥力特征的影响[J]. 中国土壤与肥料, 2021(2): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL202102006.htm
Zhang J, Cai D B, Yang S Q, et al. Soil fertility characteristics of different slopes in the Danjiangkou Reservoir area[J]. Soil and Fertilizer Sciences in China, 2021(2): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL202102006.htm
[20] 徐婷, 赵成章, 段贝贝, 等. 兰州北山刺槐不同等级叶脉密度与叶大小关系的坡向差异性[J]. 生态学杂志, 2016, 35(1): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201601006.htm
Xu T, Zhao C Z, Duan B B, et al. Slope-related variations of different levels of vein density and leaf size in Robinia pseudoacacia in the northern mountains of Lanzhou[J]. Chinese Journal of Ecology, 2016, 35(1): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201601006.htm
[21] 盘远方, 李娇凤, 姚玉萍, 等. 桂林岩溶石山青冈群落植物功能多样性和环境因子与坡向的关联研究[J]. 生态学报, 2021, 41(11): 4484-4492. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202111023.htm
Pan Y F, Li F J, Yao Y P, et al. Changes in plant functional diversity and environmental factors of Cyclobalanopsis glauca community in response to slope gradient in Karst hills, Guilin[J]. Acta Ecologica Sinica, 2021, 41(11): 4484-4492. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202111023.htm
[22] 刘玉祯, 刘文亭, 冯斌, 等. 坡向和海拔对高寒山地草甸植被分布格局特征的影响[J]. 草地学报, 2021, 29(6): 1166-1173. https://www.cnki.com.cn/Article/CJFDTOTAL-CDXU202106006.htm
Liu Y Z, Liu W T, Feng B, et al. Effects of slope aspect and elevation on vegetation distribution pattern of alpine mountain meadow[J]. Acta Agrestia Sinica, 2021, 29(6): 1166-1173. https://www.cnki.com.cn/Article/CJFDTOTAL-CDXU202106006.htm
[23] 刘旻霞, 南笑宁, 张国娟, 等. 高寒草甸不同坡向植物群落物种多样性与功能多样性的关系[J]. 生态学报, 2021, 41(13): 5398-5407. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202113033.htm
Liu M X, Nan X N, Zhang G J, et al. Relationship between species diversity and functional diversity of plant communities on different slopes in alpine meadow[J]. Acta Ecologica Sinica, 2021, 41(13): 5398-5407. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202113033.htm
[24] 黄建军. 生态环境与地质构造的耦合关系研究[J]. 地球环境学报, 2015, 6(4): 231-237. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201504005.htm
Huang J J. Study on the coupling relation between eco-environment and geotectonic[J]. Journal of Earth Environment, 2015, 6(4): 231-237. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201504005.htm
-